首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an efficient density‐based adaptive‐resolution clustering method APLoD for analyzing large‐scale molecular dynamics (MD) trajectories. APLoD performs the k‐nearest‐neighbors search to estimate the density of MD conformations in a local fashion, which can group MD conformations in the same high‐density region into a cluster. APLoD greatly improves the popular density peaks algorithm by reducing the running time and the memory usage by 2–3 orders of magnitude for systems ranging from alanine dipeptide to a 370‐residue Maltose‐binding protein. In addition, we demonstrate that APLoD can produce clusters with various sizes that are adaptive to the underlying density (i.e., larger clusters at low‐density regions, while smaller clusters at high‐density regions), which is a clear advantage over other popular clustering algorithms including k‐centers and k‐medoids. We anticipate that APLoD can be widely applied to split ultra‐large MD datasets containing millions of conformations for subsequent construction of Markov State Models. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
A new hardware‐agnostic contraction algorithm for tensors of arbitrary symmetry and sparsity is presented. The algorithm is implemented as a stand‐alone open‐source code libxm . This code is also integrated with general tensor library libtensor and with the Q‐Chem quantum‐chemistry package. An overview of the algorithm, its implementation, and benchmarks are presented. Similarly to other tensor software, the algorithm exploits efficient matrix multiplication libraries and assumes that tensors are stored in a block‐tensor form. The distinguishing features of the algorithm are: (i) efficient repackaging of the individual blocks into large matrices and back, which affords efficient graphics processing unit (GPU)‐enabled calculations without modifications of higher‐level codes; (ii) fully asynchronous data transfer between disk storage and fast memory. The algorithm enables canonical all‐electron coupled‐cluster and equation‐of‐motion coupled‐cluster calculations with single and double substitutions (CCSD and EOM‐CCSD) with over 1000 basis functions on a single quad‐GPU machine. We show that the algorithm exhibits predicted theoretical scaling for canonical CCSD calculations, O (N 6), irrespective of the data size on disk. © 2017 Wiley Periodicals, Inc.  相似文献   

3.
We propose a molecular simulation method using genetic algorithm (GA) for biomolecular systems to obtain ensemble averages efficiently. In this method, we incorporate the genetic crossover, which is one of the operations of GA, to any simulation method such as conventional molecular dynamics (MD), Monte Carlo, and other simulation methods. The genetic crossover proposes candidate conformations by exchanging parts of conformations of a target molecule between a pair of conformations during the simulation. If the candidate conformations are accepted, the simulation resumes from the accepted ones. While conventional simulations are based on local update of conformations, the genetic crossover introduces global update of conformations. As an example of the present approach, we incorporated genetic crossover to MD simulations. We tested the validity of the method by calculating ensemble averages and the sampling efficiency by using two kinds of peptides, ALA3 and (AAQAA)3. The results show that for ALA3 system, the distribution probabilities of backbone dihedral angles are in good agreement with those of the conventional MD and replica-exchange MD simulations. In the case of (AAQAA)3 system, our method showed lower structural correlation of α-helix structures than the other two methods and more flexibility in the backbone ψ angles than the conventional MD simulation. These results suggest that our method gives more efficient conformational sampling than conventional simulation methods based on local update of conformations. © 2018 Wiley Periodicals, Inc.  相似文献   

4.
5.
The treatment of pH sensitive ionization states for titratable residues in proteins is often omitted from molecular dynamics (MD) simulations. While static charge models can answer many questions regarding protein conformational equilibrium and protein–ligand interactions, pH‐sensitive phenomena such as acid‐activated chaperones and amyloidogenic protein aggregation are inaccessible to such models. Constant pH molecular dynamics (CPHMD) coupled with the Generalized Born with a Simple sWitching function (GBSW) implicit solvent model provide an accurate framework for simulating pH sensitive processes in biological systems. Although this combination has demonstrated success in predicting pKa values of protein structures, and in exploring dynamics of ionizable side‐chains, its speed has been an impediment to routine application. The recent availability of low‐cost graphics processing unit (GPU) chipsets with thousands of processing cores, together with the implementation of the accurate GBSW implicit solvent model on those chipsets (Arthur and Brooks, J. Comput. Chem. 2016, 37, 927), provide an opportunity to improve the speed of CPHMD and ionization modeling greatly. Here, we present a first implementation of GPU‐enabled CPHMD within the CHARMM‐OpenMM simulation package interface. Depending on the system size and nonbonded force cutoff parameters, we find speed increases of between one and three orders of magnitude. Additionally, the algorithm scales better with system size than the CPU‐based algorithm, thus allowing for larger systems to be modeled in a cost effective manner. We anticipate that the improved performance of this methodology will open the door for broad‐spread application of CPHMD in its modeling pH‐mediated biological processes. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
We accelerated an ab initio molecular QMC calculation by using GPGPU. Only the bottle‐neck part of the calculation is replaced by CUDA subroutine and performed on GPU. The performance on a (single core CPU + GPU) is compared with that on a (single core CPU with double precision), getting 23.6 (11.0) times faster calculations in single (double) precision treatments on GPU. The energy deviation caused by the single precision treatment was found to be within the accuracy required in the calculation, ~10?5 hartree. The accelerated computational nodes mounting GPU are combined to form a hybrid MPI cluster on which we confirmed the performance linearly scales to the number of nodes. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

7.
Cross‐validation (CV) is a common approach for determining the optimal number of components in a principal component analysis model. To guarantee the independence between model testing and calibration, the observation‐wise k‐fold operation is commonly implemented in each cross‐validation step. This operation renders the CV algorithm computationally intensive, and it is the main limitation to apply CV on very large data sets. In this paper, we carry out an empirical and theoretical investigation of the use of this operation in the element‐wise k‐fold (ekf) algorithm, the state‐of‐the‐art CV algorithm. We show that when very large data sets need to be cross‐validated and the computational time is a matter of concern, the observation‐wise k‐fold operation can be skipped. The theoretical properties of the resulting modified algorithm, referred to as column‐wise k‐fold (ckf) algorithm, are derived. Also, its performance is evaluated with several artificial and real data sets. We suggest the ckf algorithm to be a valid alternative to the standard ekf to reduce the computational time needed to cross‐validate a data set. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Hidden Markov Model derived structural alphabets are a probabilistic framework in which the complete conformational space of a peptidic chain is described in terms of probability distributions that can be sampled to identify conformations of largest probabilities. Here, we assess how three strategies to sample sub‐optimal conformations—Viterbi k‐best, forward backtrack and a taboo sampling approach—can lead to the efficient generation of peptide conformations. We show that the diversity of sampling is essential to compensate biases introduced in the estimates of the probabilities, and we find that only the forward backtrack and a taboo sampling strategies can efficiently generate native or near‐native models. Finally, we also find such approaches are as efficient as former protocols, while being one order of magnitude faster, opening the door to the large scale de novo modeling of peptides and mini‐proteins. © 2016 Wiley Periodicals, Inc.  相似文献   

9.
The approach used to calculate the two‐electron integral by many electronic structure packages including generalized atomic and molecular electronic structure system‐UK has been designed for CPU‐based compute units. We redesigned the two‐electron compute algorithm for acceleration on a graphical processing unit (GPU). We report the acceleration strategy and illustrate it on the (ss|ss) type integrals. This strategy is general for Fortran‐based codes and uses the Accelerator compiler from Portland Group International and GPU‐based accelerators from Nvidia. The evaluation of (ss|ss) type integrals within calculations using Hartree Fock ab initio methods and density functional theory are accelerated by single and quad GPU hardware systems by factors of 43 and 153, respectively. The overall speedup for a single self consistent field cycle is at least a factor of eight times faster on a single GPU compared with that of a single CPU. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

10.
Molecular dynamics (MD) simulations are a vital tool in chemical research, as they are able to provide an atomistic view of chemical systems and processes that is not obtainable through experiment. However, large‐scale MD simulations require access to multicore clusters or supercomputers that are not always available to all researchers. Recently, scientists have returned to exploring the power of graphics processing units (GPUs) for various applications, such as MD, enabled by the recent advances in hardware and integrated programming interfaces such as NVIDIA's CUDA platform. One area of particular interest within the context of chemical applications is that of aqueous interfaces, the salt solutions of which have found application as model systems for studying atmospheric process as well as physical behaviors such as the Hoffmeister effect. Here, we present results of GPU‐accelerated simulations of the liquid–vapor interface of aqueous sodium iodide solutions. Analysis of various properties, such as density and surface tension, demonstrates that our model is consistent with previous studies of similar systems. In particular, we find that the current combination of water and ion force fields coupled with the ability to simulate surfaces of differing area enabled by GPU hardware is able to reproduce the experimental trend of increasing salt solution surface tension relative to pure water. In terms of performance, our GPU implementation performs equivalent to CHARMM running on 21 CPUs. Finally, we address possible issues with the accuracy of MD simulaions caused by nonstandard single‐precision arithmetic implemented on current GPUs. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

11.
Bacterial β-ketoacyl-acyl carrier protein synthase III (FabH) has become an attractive target for the development of new antibacterial agents which can overcome the increased resistance of these pathogens to antibiotics in clinical use. Despite several efforts have been dedicated to find inhibitors for this enzyme, it is not a straightforward task, mainly due its high flexibility which makes difficult the structure-based design of FabH inhibitors. Here, we present for the first time a Molecular Dynamics (MD) study of the E. colil FabH enzyme to explore its conformational space. We compare the flexibility of this enzyme for the unliganded protein and an enzyme-inhibitor complex and find a correspondence between our modeling results and the experimental evidence previously reported for this enzyme. Furthermore, through a 100 ns MD simulation of the unliganded enzyme we extract useful information related to the concerted motions that take place along the principal components of displacement. We also establish a relation between the presence of water molecules in the oxyanion hole with the conformational stability of structural important loops. Representative conformations of the binding pocket along the whole trajectory of the unliganded protein are selected through cluster analysis and we find that they contain a conformational diversity which is not provided by the X-ray structures of ecFabH. As a proof of this last hypothesis, we use a set of 10 FabH inhibitors and show that they cannot be correctly modeled in any available X-ray structure, while by using our set of conformations extracted from the MD simulations, this task can be accomplish. Finally, we show the ability of short MD simulations for the refinement of the docking binding poses and for MM-PBSA calculations to predict stable protein-inhibitor complexes in this enzyme.  相似文献   

12.
Structural dissimilarity sampling (SDS) has been proposed as an enhanced conformational sampling method for reproducing the structural transitions of a given protein. SDS consists of cycles of two steps: (1) Selections of initial structures with structural dissimilarities by referring to a measure. (2) Conformational resampling by restarting short‐time molecular dynamics (MD) simulations from the initial structures. In the present study, an efficient measure is proposed as a dynamically self‐guiding selection to accelerate the structural transitions from a reactant state to a product state as an extension to the original SDS. In the extended SDS, the inner product (IP ) between the reactant and the snapshots generated by short‐time MD simulations are evaluated and ranked according to the IP s at every cycle. Then, the snapshots with low IP s are selected as initial structures for the short‐time MD simulations. This scheme enables one to choose dissimilar and distant initial structures from the reactant, and thus the initial structures dynamically head towards the product, promoting structural transitions from the reactant. To confirm the conformational sampling efficiency, the extended SDS was applied to maltodextrin binding protein (MBP), and we successfully reproduced the structural transition from the open to closed states with submicrosecond‐order simulation times. However, a conventional long‐time MD simulation failed to reproduce the same structural transition. We also compared the performance with that obtained by the ordinary SDS and other sampling techniques that have been developed by us to characterize the possible utility of the extended SDS for actual applications. © 2017 Wiley Periodicals, Inc.  相似文献   

13.
This article presents a comparative analysis of two replica‐exchange simulation methods for the structure refinement of protein loop conformations, starting from low‐resolution predictions. The methods are self‐guided Langevin dynamics (SGLD) and molecular dynamics (MD) with a Nosé–Hoover thermostat. We investigated a small dataset of 8‐ and 12‐residue loops, with the shorter loops placed initially from a coarse‐grained lattice model and the longer loops from an enumeration assembly method (the Loopy program). The CHARMM22 + CMAP force field with a generalized Born implicit solvent model (molecular‐surface parameterized GBSW2) was used to explore conformational space. We also assessed two empirical scoring methods to detect nativelike conformations from decoys: the all‐atom distance‐scaled ideal‐gas reference state (DFIRE‐AA) statistical potential and the Rosetta energy function. Among the eight‐residue loop targets, SGLD out performed MD in all cases, with a median of 0.48 Å reduction in global root‐mean‐square deviation (RMSD) of the loop backbone coordinates from the native structure. Among the more challenging 12‐residue loop targets, SGLD improved the prediction accuracy over MD by a median of 1.31 Å, representing a substantial improvement. The overall median RMSD for SGLD simulations of 12‐residue loops was 0.91 Å, yielding refinement of a median 2.70 Å from initial loop placement. Results from DFIRE‐AA and the Rosetta model applied to rescoring conformations failed to improve the overall detection calculated from the CHARMM force field. We illustrate the advantage of SGLD over the MD simulation model by presenting potential‐energy landscapes for several loop predictions. Our results demonstrate that SGLD significantly outperforms traditional MD in the generation and populating of nativelike loop conformations and that the CHARMM force field performs comparably to other empirical force fields in identifying these conformations from the resulting ensembles. Published 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

14.
Using a grid‐based method to search the critical points in electron density, we show how to accelerate such a method with graphics processing units (GPUs). When the GPU implementation is contrasted with that used on central processing units (CPUs), we found a large difference between the time elapsed by both implementations: the smallest time is observed when GPUs are used. We tested two GPUs, one related with video games and other used for high‐performance computing (HPC). By the side of the CPUs, two processors were tested, one used in common personal computers and other used for HPC, both of last generation. Although our parallel algorithm scales quite well on CPUs, the same implementation on GPUs runs around 10× faster than 16 CPUs, with any of the tested GPUs and CPUs. We have found what one GPU dedicated for video games can be used without any problem for our application, delivering a remarkable performance, in fact; this GPU competes against one HPC GPU, in particular when single‐precision is used. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
A molecular‐dynamics (MD) simulation study of two heptapeptides containing α‐ and β‐amino acid residues is presented. According to NMR experiments, the two peptides differ in dominant fold when solvated in MeOH: peptide 3 adopts predominantly β‐hairpin‐like conformations, while peptide 8 adopts a 14/15‐helical fold. The MD simulations largely reproduce the experimental data. Application of NOE atom? atom distance restraining improves the agreement with experimental data, but reduces the conformational sampling. Peptide 3 shows a variety of conformations, while still agreeing with the NOE and 3J‐coupling data, whereas the conformational ensemble of peptide 8 is dominated by one helical conformation. The results confirm the suitability of the GROMOS 54A7 force field for simulation or structure refinement of mixed α/β‐peptides in MeOH.  相似文献   

16.
Zn‐metalloproteins are a major class of targets for drug design. They constitute a demanding testing ground for polarizable molecular mechanics/dynamics aimed at extending the realm of quantum chemistry (QC) to very long‐duration molecular dynamics (MD). The reliability of such procedures needs to be demonstrated upon comparing the relative stabilities of competing candidate complexes of inhibitors with the recognition site stabilized in the course of MD. This could be necessary when no information is available regarding the experimental structure of the inhibitor–protein complex. Thus, this study bears on the phosphomannose isomerase (PMI) enzyme, considered as a potential therapeutic target for the treatment of several bacterial and parasitic diseases. We consider its complexes with 5‐phospho‐d ‐arabinonohydroxamate and three analog ligands differing by the number and location of their hydroxyl groups. We evaluate the energy accuracy expectable from a polarizable molecular mechanics procedure, SIBFA. This is done by comparisons with ab initio quantum‐chemistry (QC) calculations in the following cases: (a) the complexes of the four ligands in three distinct structures extracted from the entire PMI‐ligand energy‐minimized structures, and totaling up to 264 atoms; (b) the solvation energies of several energy‐minimized complexes of each ligand with a shell of 64 water molecules; (c) the conformational energy differences of each ligand in different conformations characterized in the course of energy‐minimizations; and (d) the continuum solvation energies of the ligands in different conformations. The agreements with the QC results appear convincing. On these bases, we discuss the prospects of applying the procedure to ligand‐macromolecule recognition problems. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Adaptively restrained molecular dynamics (ARMD) allows users to perform more integration steps in wall‐clock time by switching on and off positional degrees of freedoms. This article presents new, single‐pass incremental force updates algorithms to efficiently simulate a system using ARMD. We assessed different algorithms for speedup measurements and implemented them in the LAMMPS MD package. We validated the single‐pass incremental force update algorithm on four different benchmarks using diverse pair potentials. The proposed algorithm allows us to perform simulation of a system faster than traditional MD in both NVE and NVT ensembles. Moreover, ARMD using the new single‐pass algorithm speeds up the convergence of observables in wall‐clock time. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
Distance metrics facilitate a number of methods for statistical analysis. For statistical mechanical applications, it is useful to be able to compute the distance between two different orientations of a molecule. However, a number of distance metrics for rotation have been employed, and in this study, we consider different distance metrics and their utility in entropy estimation using the k‐nearest neighbors (KNN) algorithm. This approach shows a number of advantages over entropy estimation using a histogram method, and the different approaches are assessed using uniform randomly generated data, biased randomly generated data, and data from a molecular dynamics (MD) simulation of bulk water. The results identify quaternion metrics as superior to a metric based on the Euler angles. However, it is demonstrated that samples from MD simulation must be independent for effective use of the KNN algorithm and this finding impacts any application to time series data. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
A new second‐order perturbation theory (MP2) approach is presented for closed shell energy evaluations. The new algorithm has a significantly lower memory footprint, a lower FLOP (floating point operations) count, and a lower time to solution compared to previously implemented parallel MP2 methods in the GAMESS software package. Additionally, this algorithm features an adaptive approach for the disk/distributed memory storage of the MP2 amplitudes. The algorithm works well on a single workstation, small cluster, and large Cray cluster, and it allows one to perform large calculations with thousands of basis functions in a matter of hours on a single workstation. The same algorithm has been adapted for graphical processing unit (GPU) architecture. The performance of the new GPU algorithm is also discussed. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
The function of protein, RNA, and DNA is modulated by fast, dynamic exchanges between three‐dimensional conformations. Conformational sampling of biomolecules with exact and nullspace inverse kinematics, using rotatable bonds as revolute joints and noncovalent interactions as holonomic constraints, can accurately characterize these native ensembles. However, sampling biomolecules remains challenging owing to their ultra‐high dimensional configuration spaces, and the requirement to avoid (self‐) collisions, which results in low acceptance rates. Here, we present two novel mechanisms to overcome these limitations. First, we introduce temporary constraints between near‐colliding links. The resulting constraint varieties instantaneously redirect the search for collision‐free conformations, and couple motions between distant parts of the linkage. Second, we adapt a randomized Poisson‐disk motion planner, which prevents local oversampling and widens the search, to ultra‐high dimensions. Tests on several model systems show that the sampling acceptance rate can increase from 16% to 70%, and that the conformational coverage in loop modeling measured as average closeness to existing loop conformations doubled. Correlated protein motions identified with our algorithm agree with those from MD simulations. © 2018 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号