首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Electroanalysis》2005,17(23):2182-2189
An electrochemical DNA biosensor was fabricated by immobilizing DNA probe on aluminum ion films that were electrodeposited on the surface of the stearic acid‐modified carbon paste electrode (CPE). DNA immobilization and hybridization were characterized with cyclic voltammetry (CV) by using methylene blue (MB) as indicator. MB has a couple of well‐defined voltammetric redox peaks at the CPE. The currents of redox peaks of MB decreased after depositing aluminum ion films on the CPE (Al(III)/CPE) and increased dramatically after immobilizing DNA probe (ssDNA/Al(III)/CPE). Hybridization of DNA probe led to a marked decrease of the peak currents of MB, which can be used to detect the target single‐stranded DNA. The conditions for the preparation of Al(III)/CPE, and DNA immobilization and hybridization were optimized. The specific sequences related to bar transgene in the transgenic corn and the PCR amplification of CP4 epsps gene from the sample of transgenic roundup ready soybean were detected by differential pulse voltammetry (DPV) with this new electrochemical DNA biosensor. The difference between the peak currents of MB at ssDNA/Al(III)/CPE and that at hybridization DNA modified electrode (dsDNA/Al(III)/CPE) was applied to determine the specific sequence related to the target bar gene with the dynamic range comprised between 1.0×10?7 mol/L to 1.0×10?4 mol/L. A detection limit of 2.25×10?8 mol/L of oligonucleotides can be estimated.  相似文献   

2.
Rolling circle amplification (RCA) has been widely used as an isothermal DNA amplification technique for diagnostic and bioanalytical applications. Because RCA involves repeated copying of the same circular DNA template by a DNA polymerase thousands of times, we hypothesized there exist DNA sequences that can function as optimal templates and produce more DNA amplicons within an allocated time. Herein we describe an in vitro selection effort conducted to search from a random sequence DNA pool for such templates for phi29 DNA polymerase, a frequently used polymerase for RCA. Diverse DNA molecules were isolated and they were characterized by richness in adenosine (A) and cytidine (C) nucleotides. The top ranked sequences exhibit superior RCA efficiency and the use of these templates for RCA results in significantly improved detection sensitivity. AC‐rich sequences are expected to find useful applications for setting up effective RCA assays for biological sensing.  相似文献   

3.
《Electroanalysis》2003,15(7):667-670
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probes with a label‐free protocol is described. The detection of PNA‐DNA and DNA‐DNA hybridizations were accomplished based on the oxidation signal of guanine by using differential pulse voltammetry (DPV) at carbon paste electrode (CPE). It was observed that the oxidation signals of guanine obtained from the PNA and DNA probe modified CPEs were higher than those obtained from the PNA‐DNA and DNA‐DNA hybrid modified CPEs due to the accessible unbound guanine bases. The detection of hybridization between PNA probe and point mutation containing DNA target sequences was clearly observed due to the difference of the oxidation signals of guanine bases, because the point mutation was guanine nearly at the middle of the sequence. The effect of the DNA target concentration on the hybridization signal was also observed. The PNA probe was also challenged with excessive and equal amount of noncomplementary DNA and also mixtures of point mutation and target DNA.  相似文献   

4.
Palladium nanoparticles, in combination with multi‐walled carbon nanotubes (MWCNTs), were used to fabricate a sensitivity‐enhanced electrochemical DNA biosensor. MWCNTs and palladium nanoparticles were dispersed in Nafion, which were used to modify a glassy carbon electrode (GCE). Oligonucleotides with amino groups at the 5′ end were covalently linked onto carboxylic groups of MWCNTs on the electrode. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement using methylene blue (MB) as an indicator. Due to the ability of carbon nanotubes to promote electron‐transfer and the high catalytic activities of palladium nanoparticles for electrochemical reaction of MB, the sensitivity of presented electrochemical DNA biosensors was remarkably improved. The detection limit of the method for target DNA was 1.2×10?13 M.  相似文献   

5.
An electrochemical DNA biosensor for human papillomavirus (HPV) 16 detection has been developed. For this proposed biosensor, l-cysteine was first electrodeposited on the gold electrode surface to form l-cysteine film (CYSFILM). Subsequently, HPV16-specific probe was immobilized on the electrode surface with CYSFILM. Electrochemistry measurement was studied by differential pulse voltammetry method (DPV). The measurement was based on the reduction signals of methylene blue (MB) before and after hybridization either between probe and synthetic target or extracted DNA from clinical samples. The effect of probe concentration was analyzed and the best results were seen at 1000 nM. The hybridization detection presented high sensitivity and broad linear response to the synthetic-target concentration comprised between 18.75 nM and 250 nM as well as to a detection limit of 18.13 nM. The performance of this biosensor was also investigated by checking probe-modified electrode hybridization with extracted DNA from samples. The results showed that the biosensor was successfully developed and exhibited high sensitivity and satisfactory selectivity to HPV16. These results allow for the possibility of developing a new portable detection system for HPVs and for providing help in making an effective diagnosis in the early stages of infection.  相似文献   

6.
A novel electrochemical DNA biosensor based on methylene blue (MB) and chitosan-modified carbon paste electrode (CCPE) for short DNA sequences and polymerase chain reaction (PCR) amplified real samples related to the hepatitis B virus (HBV) hybridization detection is presented. Differential pulse voltammetry (DPV) was used to investigate the surface coverage and hybridization event. The decrease in the peak current of MB, an electroactive label, was observed upon hybridization of probe with the target. Numerous factors affecting the target hybridization and indicator binding reaction are optimized to maximize the sensitivity.  相似文献   

7.
Zou B  Ma Y  Wu H  Zhou G 《The Analyst》2012,137(3):729-734
Detection of nucleic acids with signal amplification is preferable in clinical diagnosis. A novel approach was developed for signal amplification by coupling invasive reaction with hyperbranched rolling circle amplification (HRCA). Invasive reaction, which does not rely on specific recognition sequences in a target but a specific structure formed by the specific binding of an upstream probe and a downstream probe to a target DNA, can generate thousands of flaps from one target DNA; then the flaps are ligated with padlock probes to form circles, which are the templates of HRCA. As HRCA amplicon sequence is free of target DNA sequence, signal amplification is achieved. Because flap sequence is the same to any target of interest, HRCA is universal; the detection cost is hence greatly reduced. The sensitivity of the proposed method is less than 1 fM artificial DNA targets; and the specificity of the method is high enough to discriminate one base difference in the target sequence. The feasibility was verified by detecting real biological samples from HBV carriers, indicating that the method is highly sensitive, cost-effective, and has a low risk of cross-contamination from amplicons. These properties should give great potential in clinical diagnosis.  相似文献   

8.
An electrochemical DNA biosensor based on the recognition of single stranded DNA (ssDNA) by hybridization detection with immobilized complementary DNA oligonucleotides is presented. DNA and oligonucleotides were covalently attached through free amines on the DNA bases using N-hydroxysulfosuccinimide (NHS) and N-(3-dimethylamino)propyl-N′-ethylcarbodiimide hydrochloride (EDC) onto a carboxylate terminated alkanethiol self-assembled monolayers (SAM) preformed on a gold electrode (AuE). Differential pulse voltammetry (DPV) was used to investigate the surface coverage and molecular orientation of the immobilized DNA molecules. The covalently immobilized probe could selectively hybridize with the target DNA to form a hybrid on the surface despite the bases being attached to the SAM. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with the target. Peak currents were found to increase in the following order: hybrid-modified AuE, mismatched hybrid-modified AuE, and the probe-modified AuE which indicates the MB signal is determined by the extent of exposed bases. Control experiments were performed using a non-complementary DNA sequence. The effect of the DNA target concentration on the hybridization signal was also studied. The interaction of MB with inosine substituted probes was investigated. Performance characteristics of the sensor are described.  相似文献   

9.
This paper describes a disposable indicator-free electrochemical DNA biosensor applied to the detection of apolipoprotein E (apoE) sequences in PCR samples. In the indicator-free assays, the duplex formation was detected by measuring the electrochemical signal of the guanine base of nucleic acids. The biosensor format involved the immobilisation of an inosine-modified (guanine-free) probe onto a screen-printed electrode (SPE) transducer and the detection of the duplex formation in connection with the square-wave voltammetric measurement of the oxidation peak of the guanine of the target sequence.The indicator-free scheme has been characterised using 23-mer oligonucleotides as model: parameters affecting the hybridisation assay such as probe immobilisation conditions, hybridisation time, use of hybridisation accelerators were examined and optimised.The analysis of PCR samples (244 bp DNA fragments, obtained by amplification of DNA extracted from human blood) required a further optimisation of the experimental procedure. In particular, a lower steric hyndrance of the probe modified surface was essential to allow an efficient hybridisation of the target DNA fragment. Negative controls have been performed using the PCR blank and amplicons unrelated to the immobilised probe. A 10 min hybridisation time allowed a full characterisation of each sample.  相似文献   

10.
Na Zhou 《Talanta》2009,77(3):1021-183
A polyaniline nanofibers (PANnano)/carbon paste electrode (CPE) was prepared via dopping PANnano in the carbon paste. The nanogold (Aunano) and carbon nanotubes (CNT) composite nanoparticles were bound on the surface of the PANnano/CPE. The immobilization and hybridization of the DNA probe on the Aunano-CNT/PANnano films were investigated with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) using methylene blue (MB) as indicator, and electrochemical impedance spectroscopy (EIS) using [Fe(CN)6]3−/4− as redox probe. The voltammetric peak currents of MB increased dramatically owing to the immobilization of the probe DNA on the Aunano-CNT/PANnano films, and then decreased obviously owing to the hybridization of the DNA probe with the complementary single-stranded DNA (cDNA). The electron transfer resistance (Ret) of the electrode surface increased after the immobilization of the probe DNA on the Aunano-CNT/PANnano films and rose further after the hybridization of the probe DNA. The remarkable difference between the Ret value at the DNA-immobilized electrode and that at the hybridized electrode could be used for the label-free EIS detection of the target DNA. The loading of the DNA probe on Aunano-CNT/PANnano films was greatly enhanced and the sensitivity for the target DNA detection was markedly improved. The sequence-specific DNA of phosphinothricin acetyltransferase (PAT) gene and the polymerase chain reaction (PCR) amplification of nopaline synthase (NOS) gene from transgenically modified beans were determined with this label-free EIS DNA detection method. The dynamic range for detecting the PAT gene sequence was from 1.0 × 10−12 mol/L to 1.0 × 10−6 mol/L with a detection limit of 5.6 × 10−13 mol/L.  相似文献   

11.
We report a novel electrochemical method for detecting sequence‐specific DNA based on competitive hybridization that occurs in a homogeneous solution phase instead of on a solution‐electrode interface as in previously reported competition‐based electrochemical DNA detection schemes. The method utilizes the competition between the target DNA (t‐DNA) and a ferrocene‐labeled peptide nucleic acid probe (Fc‐PNA) to hybridize with a probe DNA (p‐DNA) in solution. The neutral PNA backbone and the electrostatic repulsion between the negatively‐charged DNA backbone and the negatively‐charged electrode surface are then exploited to determine the result of the competition through measurement of the electrochemical signal of Fc. Upon the introduction of the t‐DNA, the stronger hybridization affinity between the t‐DNA and p‐DNA releases the Fc‐PNA from the Fc‐PNA/p‐DNA hybrid, allowing it to freely diffuse to the negatively charged electrode to produce a significantly enhanced electrochemical signal of Fc. Therefore, the presence of the t‐DNA is indicated by the appearance or enhancement of the electrochemical signal, rendering a signal‐on DNA detection, which is less susceptible to false positive and can produce more reliable results than signal‐off detection methods. All the competitive hybridizations occur in a homogeneous solution phase, resulting in very high hybridization efficiency and therefore extremely short assay time. This simple and fast signal‐on solution‐competition‐based electrochemical DNA detection strategy has promising potential to find application in fields such as nucleic acid‐based point‐of‐care testing.  相似文献   

12.
DU  Meng  YANG  Tao  ZHANG  Yongchun  JIAO  Kui 《中国化学》2009,27(10):1886-1890
The positively charged nano‐ZnO and negatively charged natural DNA were alternately adsorbed on the surface of a gold electrode, forming (ZnO/dsDNA)nlayer‐by‐layer films. Valuable dynamic information for controlling the formation and growth of the films was obtained by cyclic voltammetry and electrochemical impedance spectroscopy. Differential pulse voltammetric (DPV) measurements showed that the electroactive probe methylene blue (MB) could be loaded in the (ZnO/dsDNA)nfilms from its solution, and then released from the films into Britton‐Robinson (B‐R) buffer. The complete reloading of MB in the films could be realized by immersing the films in MB solution again. However, after incubation in the solution of carcinogenic metal nickel, the damaged (ZnO/dsDNA)n films could not return to their original and fully‐loaded state, and showed smaller DPV peak currents. The results demonstrated that the DNA damage induced by the hydroxyl radical could be achieved by electrochemistry.  相似文献   

13.
?29 DNA polymerase (?29DP) is able to carry out repetitive rounds of DNA synthesis using a circular DNA template by rolling circle amplification (RCA). It also has the ability to execute 3′–5′ digestion of single‐stranded but not double‐stranded DNA. A biosensor engineering strategy is presented that takes advantage of these two properties of ?29DP coupled with structure‐switching DNA aptamers. The design employs a DNA assembly made of a circular DNA template, a DNA aptamer, and a pre‐primer. The DNA assembly is unable to undergo RCA in the absence of cognate target owing to the formation of duplex structures. The presence of the target, however, triggers a structure‐switching event that causes nucleolytic conversion of the pre‐primer by ?29DP into a mature primer to facilitate RCA. This method relays target detection by the aptamer to the production of massive DNA amplicons, giving rise to dramatically enhanced detection sensitivity.  相似文献   

14.
In this work, a sensitive electrochemical DNA biosensor for the detection of sequence‐specific target DNA was reported. Firstly, CuO nanospindles (CuO NS) were immobilized on the surface of a glassy carbon electrode (GCE). Subsequently, gold nanoparticles (Au NPs) were introduced to the surface of CuO NS by the electrochemical deposition mode. Probe DNA with SH (HS‐DNA) at the 5′‐phosphate end was covalently immobilized on the surface of the Au NPs through Au? S bond. Scanning electron microscopy (SEM) was used to elucidate the morphology of the assembled film, and electrochemical impedance spectroscopy technique (EIS) was used to investigate the DNA sensor assembly process. Hybridization detection of DNA was performed with differential pulse voltammetry (DPV) and the methylene blue (MB) was hybridization indicator. Under the optimal conditions, the decline of reduction peak current of MB (ΔI) was linear with the logarithm of the concentration of complementary DNA from 1.0×10?13 to 1.0×10?6 mol·L?1 with a detection limit of 3.5×10?14 mol·L?1 (S/N=3). In addition, this DNA biosensor has good selectivity, and even can distinguish single‐mismatched target DNA.  相似文献   

15.
In this paper, we report a new PNA biosensor for electrochemical detection of point mutation or single nucleotide polymorphism (SNP) in p53 gene corresponding oligonucleotide based on PNA/ds-DNA triplex formation following hybridization of PNA probe with double-stranded DNA (ds-DNA) sample without denaturing the ds-DNA into single-stranded DNA (ss-DNA). As p53 gene is mutated in many human tumors, this research is useful for cancer therapy and genomic study. In this approach, methylene blue (MB) is used for electrochemical signal generation and the interaction between MB and oligonucleotides is studied by differential pulse voltammety (DPV). Probe-modified electrode is prepared by self-assembled monolayer (SAM) formation of thiolated PNA molecules on the surface of Au electrode. A significant increase in the reduction signal of MB following hybridization of the probe with the complementary double-stranded oligonucleotide (ds-oligonucleotide) confirms the function of the biosensor. The selectivity of the PNA sensor is investigated by non-complementary ds-oligonucleotides and the results support the ability of the sensor to detect single-base mismatch directly on ds-oligonucleotide. The influence of probe and ds-DNA concentrations on the effective discrimination against complementary sequence and point mutation is studied and the concentration of 10?6 M is selected as appropriate concentration. Diagnostic performance of the biosensor is described and the detection limit is found to be 4.15 × 10?12 M.  相似文献   

16.
ϕ29 DNA polymerase (ϕ29DP) is able to carry out repetitive rounds of DNA synthesis using a circular DNA template by rolling circle amplification (RCA). It also has the ability to execute 3′–5′ digestion of single‐stranded but not double‐stranded DNA. A biosensor engineering strategy is presented that takes advantage of these two properties of ϕ29DP coupled with structure‐switching DNA aptamers. The design employs a DNA assembly made of a circular DNA template, a DNA aptamer, and a pre‐primer. The DNA assembly is unable to undergo RCA in the absence of cognate target owing to the formation of duplex structures. The presence of the target, however, triggers a structure‐switching event that causes nucleolytic conversion of the pre‐primer by ϕ29DP into a mature primer to facilitate RCA. This method relays target detection by the aptamer to the production of massive DNA amplicons, giving rise to dramatically enhanced detection sensitivity.  相似文献   

17.
Electrical properties of self‐assembling DNA nanostructures underlie the paradigm of nanoscale bioelectronics, and as such require clear understanding. DNA‐mediated electron transfer (ET) from a gold electrode to DNA‐bound Methylene Blue (MB) shows directional preference, and it is sequence‐specific. During the electrocatalytic reduction of [Fe(CN)6]3? catalyzed by DNA‐bound MB, the ET rate constant for DNA‐mediated reduction of MB reaches (1.32±0.2)103 and (7.09±0.4)103 s?1 for (dGdC)20 and (dAdT)25 duplexes. The backward oxidation process is less efficient, making the DNA duplex a molecular rectifier. Lower rates of ET via (dGdC)20 agree well with its disturbed π‐stacked sub‐molecular structure. Such direction‐ and sequence‐specific ET may be implicated in DNA oxidative damage and repair, and be relevant to other polarized surfaces, such as cell membranes and biomolecular interfaces.  相似文献   

18.
In this work a partially reduced graphene oxide (p‐RGO) modified carbon ionic liquid electrode (CILE) was prepared as the platform to fabricate an electrochemical DNA sensor, which was used for the sensitive detection of target ssDNA sequence related to transgenic soybean A2704‐12 sequence. The CILE was fabricated by using 1‐butylpyridinium hexafluorophosphate as the binder and then p‐RGO was deposited on the surface of CILE by controlling the electroreduction conditions. NH2 modified ssDNA probe sequences were immobilized on the electrode surface via covalent bonds between the unreduced oxygen groups on the p‐RGO surface and the amine group at the 5′‐end of ssDNA, which was denoted as ssDNA/p‐RGO/CILE and further used to hybridize with the target ssDNA sequence. Methylene blue (MB) was used as electrochemical indicator to monitor the DNA hybridization. The reduction peak current of MB after hybridization was proportional to the concentration of target A2704‐12 ssDNA sequences in the range from 1.0×10?12 to 1.0×10?6 mol/L with a detection limit of 2.9×10?13 mol/L (3σ). The electrochemical DNA biosensor was further used for the detection of PCR products of transgenic soybean with satisfactory results.  相似文献   

19.
《Electroanalysis》2017,29(2):409-414
Electrochemistry offers sensitivity, selectivity and low cost for fabrication of sensors capable of detection of selected DNA targets or mutated genes associated with human disease. In this work, we have developed a novel label‐free, indicator‐free strategy of electrochemical DNA sensor based on Fe3O4 nanoparticles/reduced graphene oxide (Fe3O4/r‐GO) nanocomposite modified electrode. By using Fe3O4/r‐GO nanocomposite as a substrate to immobilize probe DNA and subsequent hybridization with target sequence to form dsDNA, a great signal amplification was achieved through measuring changes in DPV peak current of underlying Fe(II)/Fe(III) redox system. With the remarkable attomolar sensitivity and high specificity and at the same time, great simplicity, the proposed strategy may find great applications in different DNA assay fields.  相似文献   

20.
The short sequence related to hepatitis C virus (HCV1) is detected by a label‐free DNA hybridization biosensor. The sensor relies on the immobilization of a 20‐mer oligonucleotide containing 2 guanine and 11 cytosine bases denoted PHCV1 as probe on the pencil graphite electrode (PGE). The hybridization event was monitored by differential pulse voltammetry (DPV) using the guanine signal. The selectivity of the biosensor was studied using some noncomplementary oligonucleotides. Diagnostic performance of the biosensor is described and the detection limit was found to be 6.5 nM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号