首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
This paper deals with the numerical discretization of two‐dimensional depth‐averaged models with porosity. The equations solved by these models are similar to the classic shallow water equations, but include additional terms to account for the effect of small‐scale impervious obstructions which are not resolved by the numerical mesh because their size is smaller or similar to the average mesh size. These small‐scale obstructions diminish the available storage volume on a given region, reduce the effective cross section for the water to flow, and increase the head losses due to additional drag forces and turbulence. In shallow water models with porosity these effects are modelled introducing an effective porosity parameter in the mass and momentum conservation equations, and including an additional drag source term in the momentum equations. This paper presents and compares two different numerical discretizations for the two‐dimensional shallow water equations with porosity, both of them are high‐order schemes. The numerical schemes proposed are well‐balanced, in the sense that they preserve naturally the exact hydrostatic solution without the need of high‐order corrections in the source terms. At the same time they are able to deal accurately with regions of zero porosity, where the water cannot flow. Several numerical test cases are used in order to verify the properties of the discretization schemes proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A mathematical model was developed for three‐dimensional (3‐D) simulation of free surface flows. In this model, the flow depth is divided into a number of layers and shallow water equations are integrated in each layer to derive the hydrodynamic equations. To give a general form to this model, each layer is assumed to be non‐horizontal with varying thickness in the flow domain. A non‐orthogonal curvilinear coordinate system is employed in the model, to allow for flexibility in dealing with the irregular geometry of natural watercourses. Due to the similarity in governing equations, two‐dimensional (2‐D) depth averaged programs can be developed into a multi‐layer model. The development for a depth averaged program and its numerical scheme is described in this paper. Experimental data and semi‐analytical solutions are used to evaluate the performance of the model. Three different cases of open channel flow are tested: 1‐flow in a straight open channel, 2‐the flow development region in a channel, and 3‐flow in a meandering channel. It is shown that the model has the capability to predict velocity distribution and secondary flows in complex 3‐D flow conditions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
5.
In this study, a comparison between the 1D and 2D numerical simulation of transitional flow in open‐channel networks is presented and completely described allowing for a full comprehension of the modeling water flow. For flow in an open‐channel network, mutual effects exist among the channel branches joining at a junction. Therefore, for the 1D study, the whole system (branches and junction) cannot be treated individually. The 1D Saint Venant equations calculating the flow in the branches are then supplemented by various equations used at the junction: a discharge flow conservation equation between the branches arriving and leaving the junction, and a momentum or energy conservation equation. The disadvantages of the 1D study are that the equations used at the junction are of empirical nature due to certain parameters given by experimental results and moreover they often present a reduced field of validity. On the contrary, for the 2D study, the entire network is considered as a single unit and the flow in all the branches and junctions is solved simultaneously. Therefore, we simply apply the 2D Saint Venant equations, which are solved by a second‐order Runge–Kutta discontinuous Galerkin method. Finally, the experimental results obtained by Hager are used to validate and to compare the two approaches 1D and 2D. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
We investigate the one‐dimensional computation of supercritical open‐channel flows at a combining junction. In such situations, the network system is composed of channel segments arranged in a branching configuration, with individual channel segments connected at a junction. Therefore, two important issues have to be addressed: (a) the numerical solution in branches, and (b) the internal boundary conditions treatment at the junction. Going from the advantageous literature supports of RKDG methods to a particular investigation for a supercritical benchmark, the second‐order Runge–Kutta discontinuous Galerkin (RKDG2) scheme is selected to compute the water flow in branches. For the internal boundary handling, we propose a new approach by incorporating the nonlinear model derived from the conservation of the momentum through the junction. The nonlinear junction model was evaluated against available experiments and then applied to compute the junction internal boundary treatment for steady and unsteady flow applications. Finally, a combining flow problem is defined and simulated by the proposed framework and results are illustrated for many choices of junction angles. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
8.
This paper formulates a finite volume analogue of a finite element schematization of three‐dimensional shallow water equations. The resulting finite volume schematization, when applied to the continuity equation, exactly reproduces the set of matrix equations that is obtained by the application of the corresponding finite element schematization to the continuity equation. The procedure allows the consistent and mass conserving coupling of the finite element Telemac model for three‐dimensional flow with the finite volume Delft3D‐WAQ model for water quality. The work has been carried out as part of a joint development by LNHE and WL∣Delft Hydraulics to explore the mutual interaction of their software. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper the dynamics of a two‐layered liquid, made of two immiscible shallow‐layers of different density, has been investigated within the framework of the lattice Boltzmann method (LBM). The LBM developed in this paper for the two‐layered, shallow‐water flow has been obtained considering two separate sets of LBM equations, one for each layer. The coupling terms between the two sets have been defined as external forces, acted on one layer by the other. Results obtained from the LBM developed in this paper are compared with numerical results obtained solving the two‐layered, shallow‐water equations, with experimental and other numerical results published in literature. The results are interesting. First, the numerical results obtained by the LBM and by the shallow‐water model can be considered as equivalent. Second, the LBM developed in this paper is able to simulate motion conditions on nonflat topography. Third, the agreement between the LBM (and also shallow‐water model) numerical results and the experimental results is good when the evolution of the flow does not depend on the viscosity, that is, during the initial phase of the flow, dominated by gravity and inertia forces. When the viscous forces dominate the evolution of the flow the agreement between numerical and experimental results depends strongly on the viscosity; it is good if the numerical LBM viscosity has the same order of magnitude of the liquid's kinematic viscosity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Application of the three‐point fourth‐order compact scheme to spatial differencing of the vorticity‐stream function‐density formulation of the two‐dimensional incompressible Boussinesq equations is presented. The details for the derivation of difference relations at boundaries to generate accurate and stable solutions are also given. To assess the numerical accuracy, two linear prototype test problems with known exact solution are used. The two‐dimensional planar and cylindrical lock‐exchange flow configurations are used to conduct the numerical experiments for the Boussinesq equations. Quantitative measures for the two linear prototype test problems and comparison of the results of this work with the published results for the planar lock‐exchange flow indicates the validity and accuracy of the three‐point fourth‐order compact scheme for numerical solution of two‐dimensional incompressible Boussinesq equations. In addition, the study of using different high‐order numerical boundary conditions for the implementation of the no‐penetration boundary condition for the density at no‐slip walls is considered. It is shown that the numerical solution is sensitive to the choice of difference relation for the density at boundaries and using an inappropriate difference relation leads to spurious numerical solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Numerical modelling of shallow water flow in two dimensions is presented in this work with the results obtained in dam break tests. Free surface flow in channels can be described mathematically by the shallow‐water system of equations. These equations have been discretized using an approach based on unstructured Delaunay triangles and applied to the simulation of two‐dimensional dam break flows. A cell centred finite volume method based on Roe's approximate Riemann solver across the edges of the cells is presented and the results are compared for first‐ and second‐order accuracy. Special treatment of the friction term has been adopted and will be described. The scheme is capable of handling complex flow domains as shown in the simulation corresponding to the test cases proposed, i.e. that of a dam break wave propagating into a 45° bend channel (UCL) and in a channel with a constriction (LNEC‐IST). Comparisons of experimental and numerical results are shown. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

12.
A three‐dimensional numerical model is developed to analyze free surface flows and water impact problems. The flow of an incompressible viscous fluid is solved using the unsteady Navier–Stokes equations. Pseudo‐time derivatives are introduced into the equations to improve computational efficiency. The interface between the two phases is tracked using a volume‐of‐fluid interface tracking algorithm developed in a generalized curvilinear coordinate system. The accuracy of the volume‐of‐fluid method is first evaluated by the multiple numerical benchmark tests, including two‐dimensional and three‐dimensional deformation cases on curvilinear grids. The performance and capability of the numerical model for water impact problems are demonstrated by simulations of water entries of the free‐falling hemisphere and cone, based on comparisons of water impact loadings, velocities, and penetrations of the body with experimental data. For further validation, computations of the dam‐break flows are presented, based on an analysis of the wave front propagation, water level, and the dynamic pressure impact of the waves on the downstream walls, on a specific container, and on a tall structure. Extensive comparisons between the obtained solutions, the experimental data, and the results of other numerical simulations in the literature are presented and show a good agreement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes development of an integrated shallow surface and saturated groundwater model (GSHAW5). The surface flow motion is described by the 2‐D shallow water equations and groundwater movement is described by the 2‐D groundwater equations. The numerical solution of these equations is based on the finite volume method where the surface water fluxes are estimated using the Roe shock‐capturing scheme, and the groundwater fluxes are computed by application of Darcy's law. Use of a shock‐capturing scheme ensures ability to simulate steady and unsteady, continuous and discontinuous, subcritical and supercritical surface water flow conditions. Ground and surface water interaction is achieved by the introduction of source‐sink terms into the continuity equations. Two solutions are tightly coupled in a single code. The numerical solutions and coupling algorithms are explained. The model has been applied to 1‐D and 2‐D test scenarios. The results have shown that the model can produce very accurate results and can be used for simulation of situations involving interaction between shallow surface and saturated groundwater flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
15.
In this paper, we propose a model for a sewer network coupled to surface flow and investigate it numerically. In particular, we present a new model for the manholes in storm sewer systems. It is derived using the balance of the total energy in the complete network. The resulting system of equations contains, aside from hyperbolic conservation laws for the sewer network and algebraic relations for the coupling conditions, a system of ODEs governing the flow in the manholes. The manholes provide natural points for the interaction of the sewer system and the runoff on the urban surface modeled by shallow‐water equations. Finally, a numerical method for the coupled system is presented. In several numerical tests, we study the influence of the manhole model on the sewer system and the coupling with 2D surface flow. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
New test cases for frictionless, three‐dimensional hydrostatic flows have been derived from some known analytical solutions of the two‐dimensional shallow water equations. The flow domain is a paraboloid of revolution and the flow is determined by the initial conditions, the nonlinear advective terms, the Coriolis acceleration and by the hydrostatic pressure. Wetting and drying is also included. Some specific properties of the exact solutions are discussed under different hypothesis and relative importance of the forcing terms. These solutions are proposed for testing the stability, the accuracy and the efficiency of numerical models to be used for simulating environmental hydrostatic flows. The computed solutions obtained with a semi‐implicit finite difference—finite volume algorithm on unstructured grid are compared with the corresponding analytical solutions in both two and three space dimension. Excellent agreement are obtained for the velocity and for the resulting water surface elevation. Comparison of the computed inundation area also shows a good agreement with the analytical solution with degrading accuracy observed when the inundation area becomes relatively large and for long simulation time. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
Three‐dimensional (3D) numerical study is presented to investigate the turbulent flow in meandering compound open channels with trapezoidal cross‐sections. The flow simulation is carried out by solving the 3D Reynolds‐averaged continuity and Navier–Stokes equations with Reynolds stress equation model (RSM) for steady‐state flow. Finite volume method (FVM) is applied to numerically solve the governing equations of fluid flow. The velocity magnitude, tangential velocity, transverse velocity and Reynolds stresses are calculated for various flow conditions. Good agreement between the simulated and available laboratory measurements was obtained, indicating that the RSM can accurately predict the complicated flow phenomenon. Comparison of the calculated secondary currents of four cases (one being inbank flow and other three being overbank flow) with different water depths reveals that (i) the inbank flow exhibits different flow behaviors from that of the overbank flow does and (ii) the water depth has significant effects on the magnitude and direction of secondary currents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
We present the mathematical development and numerical solution of a new model of flow processes on an infiltrating hillslope. We also present validation and sample applications. The model is a distributed, mechanistic, physically based hillslope hydrologic model. The model describes the small‐scale processes associated with overland flow, erosion, and sediment transport on an infiltrating surface and is capable of capturing small‐scale variations in flow depth, flow velocities, interactive infiltration, erosion rates, and sediment transport. The model couples the fully two‐dimensional hydrodynamic equations for overland flow, the one‐dimensional Richards equation for infiltration, and a sediment detachment and transport model. Two simulations are presented highlighting the model's ability to capture and describe the interaction between precipitation, overland flow, erosion and infiltration at very small scales. Results of the two‐dimensional simulations indicate the system of equations produces hillslopes possessing characteristics of self‐organization as observed in real world systems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A higher‐order finite analytic scheme based on one‐dimensional finite analytic solutions is used to discretize three‐dimensional equations governing turbulent incompressible free surface flow. In order to preserve the accuracy of the numerical scheme, a new, finite analytic boundary condition is proposed for an accurate numerical solution of the partial differential equation. This condition has higher‐order accuracy. Thus, the same order of accuracy is used for the boundary. Boundary conditions were formulated and derived for fluid inflow, outflow, impermeable surfaces and symmetry planes. The derived boundary conditions are treated implicitly and updated with the solution of the problem. The basic idea for the derivation of boundary conditions was to use the discretized form of the governing equations for the fluid flow simplified on the boundaries and flow information. To illustrate the influence of the higher‐order effects at the boundaries, another, lower‐order finite analytic boundary condition, is suggested. The simulations are performed to demonstrate the validity of the present scheme and boundary conditions for a Wigley hull advancing in calm water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A three‐dimensional numerical model has been developed to simulate stratified flows with free surfaces. The model is based on the Reynolds‐averaged Navier–Stokes (RANS) equations with variable fluid density. The equations are solved in a transformed σ‐coordinate system with the use of operator‐splitting method (Int. J. Numer. Meth. Fluids 2002; 38 :1045–1068). The numerical model is validated against the one‐dimensional diffusion problem and the two‐dimensional density‐gradient flow. Excellent agreements are obtained between numerical results and analytical solutions. The model is then used to study transport phenomena of dumped sediments into a water body, which has been modelled as a strongly stratified flow. For the two‐dimensional problem, the numerical results compare well with experimental data in terms of mean particle falling velocity and spreading rate of the sediment cloud for both coarse and medium‐size sediments. The model is also employed to study the dumping of sediments in a three‐dimensional environment with the presence of free surface. It is found that during the descending process an annulus‐like cloud is formed for fine sediments whereas a plate‐like cloud for medium‐size sediments. The model is proven to be a good tool to simulate strongly stratified free surface flows. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号