首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 589 毫秒
1.
Reversible noncovalent but sequence‐dependent attachment of DNA to gels is shown to allow programmable mobility processing of DNA populations. The covalent attachment of DNA oligomers to polyacrylamide gels using acrydite‐modified oligonucleotides has enabled sequence‐specific mobility assays for DNA in gel electrophoresis: sequences binding to the immobilized DNA are delayed in their migration. Such a system has been used for example to construct complex DNA filters facilitating DNA computations. However, these gels are formed irreversibly and the choice of immobilized sequences is made once off during fabrication. In this work, we demonstrate the reversible self‐assembly of gels combined with amphiphilic DNA molecules, which exhibit hydrophobic hydrocarbon chains attached to the nucleobase. This amphiphilic DNA, which we term lipid‐DNA, is synthesized in advance and is blended into a block copolymer gel to induce sequence‐dependent DNA retention during electrophoresis. Furthermore, we demonstrate and characterize the programmable mobility shift of matching DNA in such reversible gels both in thin films and microchannels using microelectrode arrays. Such sequence selective separation may be employed to select nucleic acid sequences of similar length from a mixture via local electronics, a basic functionality that can be employed in novel electronic chemical cell designs and other DNA information‐processing systems.  相似文献   

2.
Asymmetric pulsed field electrophoresis within crystalline arrays is used to generate angular separation of DNA molecules. Four regimes of the frequency response are observed, a low frequency rise in angular separation, a plateau, a subsequent decline, and a second plateau at higher frequencies. It is shown that the frequency response for different sized DNA is governed by the relation between pulse time and the reorientation time of DNA molecules. The decline in angular separation at higher frequencies has not previously been analyzed. Real‐time videos of single DNA molecules migrating under high frequency‐pulsed electric field show the molecules no longer follow the head to tail switching, ratchet mechanism seen at lower frequencies. Once the pulse period is shorter than the reorientation time, the migration mechanism changes significantly. The molecule reptates along the average direction of the two electric fields, which reduces the angular separation. A freely jointed chain model of DNA is developed where the porous structure is represented with a hexagonal array of obstacles. The model qualitatively predicts the variation of DNA angular separation with respect to frequency.  相似文献   

3.
Multichromophore arrays of bis(2‐thienyl)diketopyrrolopyrrole (DPP) and naphthalenediimide (NDI) with two ZnII‐cyclens were constructed using thymidine DNA as a scaffold through the binding of the ZnII‐cyclens with thymine bases. We demonstrate photocurrent generation in a donor–acceptor heterojunction configuration consisting of the DPP (donor) and NDI (acceptor) arrays co‐immobilized on an Au electrode. The co‐immobilized electrode exhibited good photocurrent responses because of the efficient charge separation between the DPP and NDI arrays. In contrast, an immobilized electrode consisting of randomly assembled DPP‐NDI arrays generated no photocurrent response because DPP formed ground‐state charge‐transfer complexes with NDI in the randomly assembled arrays. Therefore, our approach to generate donor–acceptor heterojunctions based on DNA–multichromophore arrays is a useful method to efficiently generate photocurrent.  相似文献   

4.
Olson DW  Ou J  Tian M  Dorfman KD 《Electrophoresis》2011,32(5):573-580
Several continuous-time random walk (CTRW) models exist to predict the dynamics of DNA in micropost arrays, but none of them quantitatively describes the separation seen in experiments or simulations. In Part I of this series, we examine the assumptions underlying these models by observing single molecules of λ DNA during electrophoresis in a regular, hexagonal array of oxidized silicon posts. Our analysis takes advantage of a combination of single-molecule videomicroscopy and previous Brownian dynamics simulations. Using a custom-tracking program, we automatically identify DNA-post collisions and thus study a large ensemble of events. Our results show that the hold-up time and the distance between collisions for consecutive collisions are uncorrelated. The distance between collisions is a random variable, but it can be smaller than the minimum value predicted by existing models of DNA transport in post arrays. The current CTRW models correctly predict the exponential decay in the probability density of the collision hold-up times, but they fail to account for the influence of finite-sized posts on short hold-up times. The shortcomings of the existing models identified here motivate the development of a new CTRW approach, which is presented in Part II of this series.  相似文献   

5.
The charge‐transfer process in noncovalent perylenediimide (PDI)/DNA complexes has been investigated by using nanosecond laser flash photolysis (LFP) and photocurrent measurements. The PDI/DNA complexes were prepared by inclusion of cationic PDI molecules into the artificial cavities created inside DNA. The LFP experiments showed that placement of the PDI chromophore at a specific site and included within the base stack of DNA led to the efficient generation of a charge‐separated state with a long lifetime by photoexcitation. When two PDI chromophores were separately placed at different positions in DNA, the yield of the charge‐separated state with a long lifetime was dependent upon the number of A–T base pairs between the PDIs, which was explained by electron hopping from one PDI to another. Photocurrent generation of the DNA‐modified electrodes with the complex was also dependent upon the arrangement of the PDI chromophores. A good correlation was obtained between observed charge separation and photocurrent generation on the PDI/DNA‐modified electrodes, which demonstrated the importance of the defined arrangement and assembly of organic chromophores in DNA for efficient charge separation and transfer in multichromophore arrays.  相似文献   

6.
The free solution electrophoretic behavior of DNA‐protein complexes depends on their charge and mass in a certain experimental condition, which are two fundamental properties of DNA‐protein complexes in free solution. Here, we used CE LIF to study the free solution behavior of DNA‐methyl‐CpG‐binding domain protein (MBD2b) complexes through exploring the relationship between the mobilities, charge, and mass of DNA‐protein complexes. This method is based on the effective separation of free DNA and DNA‐protein complexes because of their different electrophoretic mobility in a certain electric field. In order to avoid protein adsorption, a polyacrylamide‐coated capillary was used. Based on the evaluation of the electrophoretic behavior of formed DNA‐MBD2b complexes, we found that the values of (μ0/μ)‐1 were directly proportional to the charge‐to‐mass ratios of formed complexes, where the μ0 and μ are the mobility of free DNA probe and DNA‐protein complex, respectively. The models were further validated by the complex mobilities of protein with various lengths of DNA probes. The deviation of experimental and calculated charge‐to‐mass ratios of formed complexes from the theoretical data was less than 10%, suggesting that our models are useful to analyze the DNA‐binding properties of the purified MBD2b protein and help to analyze other DNA‐protein complexes. Additionally, this study enhances the understanding of the influence of the charge‐to‐mass ratios of formed DNA‐protein complexes on their separation and electrophoretic behaviors.  相似文献   

7.
Aligning carbon nanotubes (CNTs) is a key challenge for fabricating CNT‐based electronic devices. Herein, we report a spherical nucleic acid (SNA) mediated approach for the highly precise alignment of CNTs at prescribed sites on DNA origami. We find that the cooperative DNA hybridization occurring at the interface of SNA and DNA‐coated CNTs leads to an approximately five‐fold improvement of the positioning efficiency. By combining this with the intrinsic positioning addressability of DNA origami, CNTs can be aligned in parallel with an extremely small angular variation of within 10°. Moreover, we demonstrate that the parallel alignment of CNTs prevents incorrect logic functionality originating from stray conducting paths formed by misaligned CNTs. This SNA‐mediated method thus holds great potential for fabricating scalable CNT arrays for nanoelectronics.  相似文献   

8.
Coacervate microdroplets produced by liquid–liquid phase separation have been used as synthetic protocells that mimic the dynamical organization of membrane‐free organelles in living systems. Achieving spatiotemporal control over droplet condensation and disassembly remains challenging. Herein, we describe the formation and photoswitchable behavior of light‐responsive coacervate droplets prepared from mixtures of double‐stranded DNA and an azobenzene cation. The droplets disassemble and reassemble under UV and blue light, respectively, due to azobenzene trans/cis photoisomerisation. Sequestration and release of captured oligonucleotides follow the dynamics of phase separation such that light‐activated transfer, mixing, hybridization, and trafficking of the oligonucleotides can be controlled in binary populations of the droplets. Our results open perspectives for the spatiotemporal control of DNA coacervates and provide a step towards the dynamic regulation of synthetic protocells.  相似文献   

9.
DNA phase transitions are often induced by the addition of condensation agents or by dry concentration. Herein, we show that the non‐equilibrium setting of a moderate heat flow across a water‐filled chamber separates and gelates DNA strands with single‐base resolution. A dilute mix of DNA with two slightly different gel‐forming sequences separates into sequence‐pure hydrogels under constant physiological solvent conditions. A single base change in a 36 mer DNA inhibits gelation. Only sequences with the ability to form longer strands are concentrated, further elongated, and finally gelated by length‐dependent thermal trapping. No condensation agents, such as multivalent ions, were added. Equilibrium aggregates from dry concentration did not show any sequence separation. RNA is expected to behave identically owing to its equal thermophoretic properties. The highly sequence‐specific phase transition points towards new possibilities for non‐equilibrium origins of life.  相似文献   

10.
DNA separation by fragment length can be readily achieved using sieving gels in electrophoresis. Separation by sequence has not been as simple, generally requiring adequate differences in native or induced conformation between single or hybridized strands or differences in thermal or chemical stability of hybridized strands. Previously, it was shown that four single‐stranded DNA (ssDNA) 76‐mers that differ by only a few A‐G substitutions could be separated based solely on sequence by adding guanosine‐5’‐monophosphate to the running buffer in capillary zone electrophoresis (CZE). The separation was attributed to interactions of the ssDNA with self‐assembled guanine‐tetrad structures; however, subsequent studies of an expanded set of ten 76‐mers showed that the separation was a more general phenomenon that occurred at high salt concentrations. With the long‐term goal of using experimental and computational methods to provide insight into the basis of the separation, a set of ssDNA 15‐mers was designed including a poly(dT) 15‐mer and nine variants. Separations were performed using fluorescent‐labeled ssDNA in CZE with laser‐induced fluorescence detection. Results show that separation improves with increasing buffer concentration and decreasing temperature, due at least in part to longer separation times. Migration times increase with increasing purine content, with A having a much larger effect that G. Circular dichroism spectra of the mixtures of the strands suggest that the separation is not due to changes in conformation of the ssDNA at high salt concentrations.  相似文献   

11.
The growing interest in DNA diagnostics is addressed today by microarrays with fluoresence detection. In our approach, we utilize spatially defined arrays of short oligonucleotides on a modified glass surface. Surface enhanced resonance Raman scattering (SERRS) is used to obtain molecularly specific spectra of the Raman‐active dye‐labeled DNA. Nanoparticles produced by enzymatic silver deposition are used as SERS‐active substrate. They grow directly on the modified oligonucleotides and only in the spatially defined areas on the chip. Furthermore, they potentially offer several advantages for SERS detection. The nanoparticles are characterized and their ability for use as SERS‐ and SERRS‐active substrate is estimated. Three different Raman‐active dyes are investigated for their potential for involvement in sequence specific DNA analysis.  相似文献   

12.
The main chromophore of (6‐4) photoproducts, namely, 5‐methyl‐2‐pyrimidone (Pyo), is an artificial noncanonical nucleobase. This chromophore has recently been reported as a potential photosensitizer that induces triplet damage in thymine DNA. In this study, we investigate the spectroscopic properties of the Pyo unit embedded in DNA by means of explicit solvent molecular‐dynamics simulations coupled to time‐dependent DFT and quantum‐mechanics/molecular‐mechanics techniques. Triplet‐state transfer from the Pyo to the thymine unit was monitored in B‐DNA by probing the propensity of this photoactive pyrimidine analogue to induce a Dexter‐type triplet photosensitization and subsequent DNA damage.  相似文献   

13.
DNA has become a prime material for assembling complex three‐dimensional objects that promise utility in various areas of application. However, achieving user‐defined goals with DNA objects has been hampered by the difficulty to prepare them at arbitrary concentrations and in user‐defined solution conditions. Here, we describe a method that solves this problem. The method is based on poly(ethylene glycol)‐induced depletion of species with high molecular weight. We demonstrate that our method is applicable to a wide spectrum of DNA shapes and that it achieves excellent recovery yields of target objects up to 97 %, while providing efficient separation from non‐integrated DNA strands. DNA objects may be prepared at concentrations up to the limit of solubility, including the possibility for bringing DNA objects into a solid phase. Due to the fidelity and simplicity of our method we anticipate that it will help to catalyze the development of new types of applications that use self‐assembled DNA objects.  相似文献   

14.
Human centromeric alpha‐satellite DNA is composed of tandem arrays of two types of 171 bp monomers; type A and type B. The differences between these types are concentrated in a 17 bp region of the monomer called the A/B box. Here, we have determined the solution structure of the C‐rich strand of the two main variants of the human alpha‐satellite A box. We show that, under acidic conditions, the C‐rich strands of two A boxes self‐recognize and form a head‐to‐tail dimeric i‐motif stabilized by four intercalated hemi‐protonated C:C+ base pairs. Interestingly, the stack of C:C+ base pairs is capped by T:T and Hoogsteen A:T base pairs. The two main variants of the A box adopt a similar three‐dimensional structure, although the residues involved in the formation of the i‐motif core are different in each case. Together with previous studies showing that the B box (known as the CENP‐B box) also forms dimeric i‐motif structures, our finding of this non‐canonical structure in the A box shows that centromeric alpha satellites in all human chromosomes are able to form i‐motifs, which consequently raises the possibility that these structures may play a role in the structural organization of the centromere.  相似文献   

15.
Herein, we report label‐free detection of single‐molecule DNA hybridization dynamics with single‐base resolution. By using an electronic circuit based on point‐decorated silicon nanowires as electrical probes, we directly record the folding/unfolding process of individual hairpin DNAs with sufficiently high signal‐to‐noise ratio and bandwidth. These measurements reveal two‐level current oscillations with strong temperature dependence, enabling us to determine the thermodynamic and kinetic properties of hairpin DNA hybridization. More importantly, successive, stepwise increases and decreases in device conductance at low temperature on a microsecond timescale are successfully observed, indicating a base‐by‐base unfolding/folding process. The process demonstrates a kinetic zipper model for DNA hybridization/dehybridization at the single base‐pair level. This measurement capability promises a label‐free single‐molecule approach to probe biomolecular interactions with fast dynamics.  相似文献   

16.
Controlling the functional dynamics of DNA within living cells is essential in biomedical research. Epigenetic modifications such as DNA methylation play a key role in this endeavour. DNA methylation can be controlled by genetic means. Yet there are few chemical tools available for the spatial and temporal modulation of this modification. Herein, we present a small‐molecule approach to modulate DNA methylation with light. The strategy uses a photo‐tuneable version of a clinically used drug (5‐aza‐2′‐deoxycytidine) to alter the catalytic activity of DNA methyltransferases, the enzymes that methylate DNA. After uptake by cells, the photo‐regulated molecule can be light‐controlled to reduce genome‐wide DNA methylation levels in proliferating cells. The chemical tool complements genetic, biochemical, and pharmacological approaches to study the role of DNA methylation in biology and medicine.  相似文献   

17.
DNA governs the storage and transfer of genetic information through generations in all living systems with the exception of some viruses. Its physicochemical nature and the Watson–Crick base pairing properties allow molecular constructions at nanometer length, thereby enabling the design of desired structural motifs, which can self‐assemble to form large supramolecular arrays and scaffolds. The tailor‐made DNAs have been an interesting material for such designed nanoscale constructions. However, the synthesis of specific structures with a desired molecular function is still in its infancy and therefore has to be further explored. To add a new dimension to this approach, we have synthesized a rigid three‐way branched adamantane motif, which is capable of forming highly stable DNA networks. The moiety generated could serve as a useful building block for DNA‐based nanoconstructions.  相似文献   

18.
Circular single‐stranded DNA (c‐ssDNA) has significant applications in DNA detection, the development of nucleic acid medicine, and DNA nanotechnology because it shows highly unique features in mobility, dynamics, and topology. However, in most cases, the efficiency of c‐ssDNA preparation is very low because polymeric byproducts are easily formed due to intermolecular reaction. Herein, we report a one‐pot ligation method to efficiently prepare large c‐ssDNA. By ligating several short fragments of linear single‐stranded DNA (l‐ssDNA) in one‐pot by using T4 DNA ligase, longer l‐ssDNAs intermediates are formed and then rapidly consumed by the cyclization. Since the intramolecular cyclization reaction is much faster than intermolecular polymerization, the formation of polymeric products is suppressed and the dominance of intramolecular cyclization is promoted. With this simple approach, large‐sized single‐stranded c‐ssDNAs (e.g., 200‐nt) were successfully synthesized in high selectivity and yield.  相似文献   

19.
The incorporation of synthetic molecules as corner units in DNA structures has been of interest over the last two decades. In this work, we present a facile method for generating branched small molecule‐DNA hybrids with controllable valency, different sequences, and directionalities (5′–3′) using a “printing” process from a simple 3‐way junction structure. We also show that the DNA‐imprinted small molecule can be extended asymmetrically using polymerase chain reaction (PCR) and can be replicated chemically. This strategy provides opportunities to achieve new structural motifs in DNA nanotechnology and introduce new functionalities to DNA nanostructures.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号