首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We introduce a smoothed particle hydrodynamics (SPH) concept for the stabilization of the interface between 2 fluids. It is demonstrated that the change in the pressure gradient across the interface leads to a force imbalance. This force imbalance is attributed to the particle approximation implicit to SPH. To stabilize the interface, a pressure gradient correction is proposed. In this approach, the multi‐fluid pressure gradients are related to the (gravitational and fluid) accelerations. This leads to a quasi‐buoyancy correction for hydrostatic (stratified) flows, which is extended to nonhydrostatic flows. The result is a simple density correction that involves no parameters or coefficients. This correction is included as an extra term in the SPH momentum equation. The new concept for the stabilization of the interface is explored in 5 case studies and compared with other multi‐fluid models. The first case is the stagnant flow in a tank: The interface remains stable up to density ratios of 1:1000 (typical for water and air), in combination with artificial wave speed ratios up to 1:4. The second and third cases are the Rayleigh‐Taylor instability and the rising bubble, where a reasonable agreement between SPH and level‐set models is achieved. The fourth case is an air flow across a water surface up to density ratios of 1:100, artificial wave speed ratios of 1:4, and high air velocities. The fifth case is about the propagation of internal gravity waves up to density ratios of 1:100 and artificial wave speed ratios of 1:4. It is demonstrated that the quasi‐buoyancy model may be used to stabilize the interface between 2 fluids up to high density ratios, with real (low) viscosities and more realistic wave speed ratios than achieved by other weakly compressible SPH multi‐fluid models. Real wave speed ratios can be achieved as long as the fluid velocities are not very high. Although the wave speeds may be artificial in many cases, correct and realistic wave speed ratios are essential in the modelling of heat transfer between 2 fluids (eg, in engineering applications such as gas turbines).  相似文献   

2.
The purpose of the present study is to establish a numerical model appropriate for solving inviscid/viscous free‐surface flows related to nonlinear water wave propagation. The viscous model presented herein is based on the Navier–Stokes equations, and the free‐surface is calculated through an arbitrary Lagrangian–Eulerian streamfunction‐vorticity formulation. The streamfunction field is governed by the Poisson equation, and the vorticity is obtained on the basis of the vorticity transport equation. For computing the inviscid flow the Laplace streamfunction equation is used. These equations together with the respective (appropriate) fully nonlinear free‐surface boundary conditions are solved using a finite difference method. To demonstrate the model feasibility, in the present study we first simulate collision processes of two solitary waves of different amplitudes, and compute the phenomenon of overtaking of such solitary waves. The developed model is subsequently applied to calculate (both inviscid and the viscous) flow field, as induced by passing of a solitary wave over submerged rectangular structures and rigid ripple beds. Our study provides a reasonably good understanding of the behavior of (inviscid/viscous) free‐surface flows, within the framework of streamfunction‐vorticity formulation. The successful simulation of the above‐mentioned test cases seems to suggest that the arbitrary Lagrangian–Eulerian/streamfunction‐vorticity formulation is a potentially powerful approach, capable of effectively solving the fully nonlinear inviscid/viscous free‐surface flow interactions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The growth of the Kelvin–Helmholtz instability generated at the interface between two ideal gases is studied by means of a Smoothed Particle Hydrodynamics (SPH) scheme suitable for multi‐fluids. The SPH scheme is based on the continuity equation approach where the densities of SPH particles are evolved during the simulation, in combination with a momentum equation previously proposed in the literature. A series of simulations were carried out to investigate the influence of viscosity, smoothing, the thickness of density and velocity transition layers. It was found that the effective viscosity of the presented results are strongly dependent on the artificial viscosity parameter αAV, with a linear dependence of 0.15. The utilisation of a viscosity switch is found to significantly reduce the spurious viscosity dependence to 1.68 × 10?4 and generated qualitatively improved behaviour for inviscid fluids. The linear growth rate in the numerical solutions is found to be in satisfactory agreement with analytical expectations, with an average relative error 〈ηsmooth〉=13%. In addition, the role played by velocity and density transition layers is also in general agreement with the analytical theory, except for the sharp‐velocity, finite‐density gradient cases where the larger growth rate than the classical growth rate is expected. We argue the inherited smoothing properties of the velocity field during the simulations are responsible for causing this discrepancy. Finally, the SPH results are in good agreement for finite velocity and density gradient scenarios, where an average relative error of 〈ηsmooth〉=11.5% is found in our work. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The kernel gradient free (KGF) smoothed particle hydrodynamics (SPH) method is a modified finite particle method (FPM) which has higher order accuracy than the conventional SPH method. In KGF‐SPH, no kernel gradient is required in the whole computation, and this leads to good flexibility in the selection of smoothing functions and it is also associated with a symmetric corrective matrix. When modeling viscous incompressible flows with SPH, FPM or KGF‐SPH, it is usual to approximate the Laplacian term with nested approximation on velocity, and this may introduce numerical errors from the nested approximation, and also cause difficulties in dealing with boundary conditions. In this paper, an improved KGF‐SPH method is presented for modeling viscous, incompressible fluid flows with a novel discrete scheme of Laplacian operator. The improved KGF‐SPH method avoids nested approximation of first order derivatives, and keeps the good feature of ‘kernel gradient free’. The two‐dimensional incompressible fluid flow of shear cavity, both in Euler frame and Lagrangian frame, are simulated by SPH, FPM, the original KGF‐SPH and improved KGF‐SPH. The numerical results show that the improved KGF‐SPH with the novel discrete scheme of Laplacian operator are more accurate than SPH, and more stable than FPM and the original KGF‐SPH. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Two dimensional equations of steady motion for third order fluids are expressed in a special coordinate system generated by the potential flow corresponding to an inviscid fluid. For the inviscid flow around an arbitrary object, the streamlines are the phicoordinates and velocity potential lines are psi-coordinates which form an orthogonal curvilinear set of coordinates. The outcome, boundary layer equations, is then shown to be independent of the body shape immersed into the flow. As a first approximation, assumption that second grade terms are negligible compared to viscous and third grade terms. Second grade terms spoil scaling transformation which is only transformation leading to similarity solutions for third grade fluid. By ~sing Lie group methods, infinitesimal generators of boundary layer equations are calculated. The equations are transformed into an ordinary differential system. Numerical solutions of outcoming nonlinear differential equations are found by using combination of a Runge-Kutta algorithm and shooting technique.  相似文献   

6.
An adaptive (Lagrangian) boundary element approach is proposed for the general three‐dimensional drop deformation in confined flow. The adaptive method is stable as it includes remeshing capabilities of the deforming interface between drop and suspending fluid, and thus can handle large deformations. Both drop and surrounding fluid are viscous incompressible and can be Newtonian or viscoelastic. A boundary‐only formulation is implemented for fluids obeying the linear Jeffrey's constitutive equation. Similarly to the formulation for two‐dimensional Newtonian fluids (Khayat RE, Luciani A, Utracki LA. Boundary element analysis of planar drop deformation in confined flow. Part I. Newtonian fluids. Engineering Analysis of Boundary Elements 1997; 19 : 279), the method requires the solution of two simultaneous integral equations on the interface between the two fluids and the confining solid boundary. Although the problem is formulated for any confining geometry, the method is illustrated for a deforming drop as it is driven by the ambient flow inside a cylindrical tube. The accuracy of the method is assessed by comparison with the analytical solution for two‐phase radial spherical flow, leading to good agreement. The influence of mesh refinement is examined for a drop in simple shear flow. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
This paper describes the extension of the Cartesian cut cell method to applications involving unsteady incompressible viscous fluid flow. The underlying scheme is based on the solution of the full Navier–Stokes equations for a variable density fluid system using the artificial compressibility technique together with a Jameson‐type dual time iteration. The computational domain encompasses two fluid regions and the interface between them is treated as a contact discontinuity in the density field, thereby eliminating the need for special free surface tracking procedures. The Cartesian cut cell technique is used for fitting the complex geometry of solid boundaries across a stationary background Cartesian grid which is located inside the computational domain. A time accurate solution is achieved by using an implicit dual‐time iteration technique based on a slope‐limited, high‐order, Godunov‐type scheme for the inviscid fluxes, while the viscous fluxes are estimated using central differencing. Validation of the new technique is by modelling the unsteady Couette flow and the Rayleigh–Taylor instability problems. Finally, a test case for wave run‐up and overtopping over an impermeable sea dike is performed. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

8.
A heterogeneous domain decomposition approach is followed to simulate the unsteady wavy flow generated by a body moving beneath a free surface. Attention being focused on complex free surface configurations, including wave‐breaking phenomena, a two‐fluid viscous flow model is used in the free surface region to capture the air–water interface (via a level‐set technique), while a potential flow approximation is adopted to describe the flow far from the interface. Two coupling strategies are investigated, differing in the transmission conditions. Both the adopted approaches make use of the inviscid velocity field as boundary condition in the Navier–Stokes solution. For validation purposes, two different two‐dimensional non‐breaking flows are simulated. Domain decomposition results are compared with both fully viscous and fully inviscid results, obtained by solving the corresponding equations in the whole fluid domain, and with available experimental data. Finally, the unsteady evolution of a steep breaking wave is followed and some of the physical phenomena, experimentally observed, are reproduced. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper an incompressible smoothed particle hydrodynamics (Incom‐SPH) model is used to simulate the interactions between the free surface flow and a moving object. Incom‐SPH method is a two‐step semi‐implicit hydrodynamic formulation of the SPH algorithm and is capable of accurately treating the free surface deformations and impact forces during the solid–fluid interactions. For a free‐falling object, its motion is tracked by an additional Lagrangian algorithm based on Newton's law to couple with the Incom‐SPH program. The developed model is employed to investigate the water entry of a free‐falling wedge. The accuracy of the computations is validated by the good agreement in predicting the relevant hydrokinematic and hydrodynamic parameters. Finally, a numerical test is performed to study the influence of spatial resolution on the water entry features. The Incom‐SPH modeling coupled with the solid–fluid interaction algorithm could provide a promising computational tool to predict the slamming problems in coastal and offshore engineering. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
In this essay I will attempt to identify the main events in the history of thought about irrotational flow of viscous fluids. I am of the opinion that when considering irrotational solutions of the Navier–Stokes equations it is never necessary and typically not useful to put the viscosity to zero. This observation runs counter to the idea frequently expressed that potential flow is a topic which is useful only for inviscid fluids; many people think that the notion of a viscous potential flow is an oxymoron. Incorrect statements like “… irrotational flow implies inviscid flow but not the other way around” can be found in popular textbooks.  相似文献   

11.
This paper describes the development of a semi‐Lagrangian computational method for simulating complex 3D two phase flows. The Navier–Stokes equations are solved separately in both fluids using a robust pseudo‐compressibility method able to deal with high density ratio. The interface tracking is achieved by the segment Lagrangian volume of fluid (SL‐VOF) method. The 2D SL‐VOF method using the concepts of VOF, piecewise linear interface calculation (PLIC) and Lagrangian advection of the interface is herein extended to 3D flows. Three different test cases of SL‐VOF 3D are presented for validation and comparison either with 2D flows or with other numerical methods. A good agreement is observed in each case. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Based on the linear theory, stability of viscous disturbances in a supersonic plane Couette flow of a vibrationally excited gas described by a system of linearized equations of two-temperature gas dynamics including shear and bulk viscosity is studied. It is demonstrated that two sets are identified in the spectrum of the problem of stability of plane waves, similar to the case of a perfect gas. One set consists of viscous acoustic modes, which asymptotically converge to even and odd inviscid acoustic modes at high Reynolds numbers. The eigenvalues from the other set have no asymptotic relationship with the inviscid problem and are characterized by large damping decrements. Two most unstable viscous acoustic modes (I and II) are identified; the limits of these modes were considered previously in the inviscid approximation. It is shown that there are domains in the space of parameters for both modes, where the presence of viscosity induces appreciable destabilization of the flow. Moreover, the growth rates of disturbances are appreciably greater than the corresponding values for the inviscid flow, while thermal excitation in the entire considered range of parameters increases the stability of the viscous flow. For a vibrationally excited gas, the critical Reynolds number as a function of the thermal nonequilibrium degree is found to be greater by 12% than for a perfect gas.  相似文献   

13.
可压缩多介质粘性流体的数值计算   总被引:1,自引:0,他引:1  
将考虑热传导和粘性情况下的Navier Stokes方程描述的物理过程分解成3个子过程进行数值计算,即把整个流量计算分解成无粘性流量、粘性流量和热流量3部分,采用多介质流体高精度parabolic piecewise method(PPM)方法、二阶空间中心差方法和两步Rung-Kutta时间推进方法相结合进行数值计算。给出了激波管中Riemann问题和二维、三维Richtmyer-Meshkov界面不稳定性的Navier Stokes方程和Euler方程对比计算结果,显示了粘性对界面不稳定性的影响。  相似文献   

14.
This paper describes a method for determining the fluid forces on oscillating bodies in viscous fluid when the corresponding flow problem has been solved using the finite element method. These forces are characterized by the concept of added mass, added damping and added force. Numerical results are obtained for several example body shapes. Comparison is made with exact analytical results and other finite element results for the limiting cases of Stoke's flow and inviscid flow, and good agreement is obtained. The results for finite values of the body amplitude parameter β show the appearance of added force from the steady streaming component of the flow for asymmetric bodies. Results are also obtained for the associated flow where the fluid remote from a fixed body is oscillating.  相似文献   

15.
16.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The inviscid temporal stability analysis of two-fluid parallel shear flow with a free surface, down an incline, is studied. The velocity profiles are chosen as piecewise-linear with two limbs. The analysis reveals the existence of unstable inviscid modes, arising due to wave interaction between the free surface and the shear-jump interface. Surface tension decreases the maximum growth rate of the dominant disturbance. Interestingly, in some limits, surface tension destabilises extremely short waves in this flow. This can happen because of the interaction with the shear-jump interface. This flow may be compared with a corresponding viscous two-fluid flow. Though viscosity modifies the stability properties of the flow system both qualitatively and quantitatively, there is qualitative agreement between the viscous and inviscid stability analysis when the less viscous fluid is closer to the free surface.  相似文献   

18.
This paper presents a new smoothed particle hydrodynamics (SPH) model for simulating multiphase fluid flows with large density ratios. The new SPH model consists of an improved discretization scheme, an enhanced multiphase interface treatment algorithm, and a coupled dynamic boundary treatment technique. The presented SPH discretization scheme is developed from Taylor series analysis with kernel normalization and kernel gradient correction and is then used to discretize the Navier‐Stokes equation to obtain improved SPH equations of motion for multiphase fluid flows. The multiphase interface treatment algorithm involves treating neighboring particles from different phases as virtual particles with specially updated density to maintain pressure consistency and a repulsive interface force between neighboring interface particles into the pressure gradient to keep sharp interface. The coupled dynamic boundary treatment technique includes a soft repulsive force between approaching fluid and solid particles while the information of virtual particles are approximated using the improved SPH discretization scheme. The presented SPH model is applied to 3 typical multiphase flow problems including dam breaking, Rayleigh‐Taylor instability, and air bubble rising in water. It is demonstrated that inherent multiphase flow physics can be well captured while the dynamic evolution of the complex multiphase interfaces is sharp with consistent pressure across the interfaces.  相似文献   

19.
In this paper the dynamics of a two‐layered liquid, made of two immiscible shallow‐layers of different density, has been investigated within the framework of the lattice Boltzmann method (LBM). The LBM developed in this paper for the two‐layered, shallow‐water flow has been obtained considering two separate sets of LBM equations, one for each layer. The coupling terms between the two sets have been defined as external forces, acted on one layer by the other. Results obtained from the LBM developed in this paper are compared with numerical results obtained solving the two‐layered, shallow‐water equations, with experimental and other numerical results published in literature. The results are interesting. First, the numerical results obtained by the LBM and by the shallow‐water model can be considered as equivalent. Second, the LBM developed in this paper is able to simulate motion conditions on nonflat topography. Third, the agreement between the LBM (and also shallow‐water model) numerical results and the experimental results is good when the evolution of the flow does not depend on the viscosity, that is, during the initial phase of the flow, dominated by gravity and inertia forces. When the viscous forces dominate the evolution of the flow the agreement between numerical and experimental results depends strongly on the viscosity; it is good if the numerical LBM viscosity has the same order of magnitude of the liquid's kinematic viscosity. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
A numerical simulation is performed to investigate the flow induced by a sphere moving along the axis of a rotating cylindrical container filled with the viscous fluid. Three‐dimensional incompressible Navier–Stokes equations are solved using a finite element method. The objective of this study is to examine the feature of waves generated by the Coriolis force at moderate Rossby numbers and that to what extent the Taylor–Proudman theorem is valid for the viscous rotating flow at small Rossby number and large Reynolds number. Calculations have been undertaken at the Rossby numbers (Ro) of 1 and 0.02 and the Reynolds numbers (Re) of 200 and 500. When Ro=O(1), inertia waves are exhibited in the rotating flow past a sphere. The effects of the Reynolds number and the ratio of the radius of the sphere and that of the rotating cylinder on the flow structure are examined. When Ro ? 1, as predicted by the Taylor–Proudman theorem for inviscid flow, the so‐called ‘Taylor column’ is also generated in the viscous fluid flow after an evolutionary course of vortical flow structures. The initial evolution and final formation of the ‘Taylor column’ are exhibited. According to the present calculation, it has been verified that major theoretical statement about the rotating flow of the inviscid fluid may still approximately predict the rotating flow structure of the viscous fluid in a certain regime of the Reynolds number. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号