首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
MnxNi0:5-xZn0:5Fe2O4 nanorods were successfully synthesized by the thermal treatment of rod-like precursors that were fabricated by the co-precipitation of Mn2+, Ni2+, and Fe2+ in the lye. The phase, morphology, and particle diameter were examined by the X-ray diffrac-tion and transmission electron microscopy. The magnetic properties of the samples were stud-ied using a vibrating sample magnetometer. The results indicated that pure Ni0:5Zn0:5Fe2O4 nanorods with a diameter of 35 nm and an aspect ratio of 15 were prepared. It was found that the diameter of the MnxNi0:5-xZn0:5Fe2O4 (0≤x≤0.5) samples increased, the length and the aspect ratio decreased, with an increase in x value. When x=0.5, the diameter and the aspect ratio of the sample reached up to 50 nm and 7~8, respectively. The coercivity of the samples first increased and then decreased with the increase in the x value. The coer-civity of the samples again increased when the x value was higher than 0.4. When x=0.5,the coercivity of the MnxNi0:5-xZn0:5Fe2O4 sample reached the maximal value (134.3 Oe)at the calcination temperature of 600 oC. The saturation magnetization of the samples first increased and then decreased with the increase in the x value. When x=0.2, the satura-tion magnetization of the sample reached the maximal value (68.5 emu/g) at the calcination temperature of 800 oC.  相似文献   

2.
Co0.5Ni0.5(Gd/Nd)xFe2-xO4 (x ?= ?0.0 and 0.06) ferrites were prepared by the solid-state reaction method. These materials were characterized by XRD, FT-IR spectroscopy, and VSM techniques. The XRD analysis revealed the phase formation of all samples and their cubic spinel structure with the Fd-3m space group. Lattice constant was found to increase due to Gd and Nd ions substitution. However, the crystallite size was observed to decrease by the substitution effect. The FT-IR spectra showed the two vibrational frequency bands of the tetrahedral and octahedral sites. From the magnetic properties study, it was identified that the pure and Gd substituted Co0.5Ni0.5Fe2O4 ferrite showed a ferromagnetic behaviour. While the Nd substituted Co0.5Ni0.5Fe2O4 ferrite delivered a superparamagnetic behaviour. The substitution of Gd and Nd changed the values of the magnetic parameters of Co0.5Ni0.5Fe2O4 ferrite. An increase in the saturation magnetization (Ms) value was observed due to substitution of Gd and Nd in Co0.5Ni0.5Fe2O4 ferrite, indicating that Gd and Nd substitution strengthen the supermagnetic interactions in Co0.5Ni0.5Fe2O4 ferrite. The highest value of Ms was observed in Gd doped sample.  相似文献   

3.
This article presents the results of our investigation on the obtaining of Ni0.65Zn0.35Fe2O4 ferrite nanoparticles embedded in a SiO2 matrix using a modified sol–gel synthesis method, starting from tetraethylorthosilicate (TEOS), metal (FeIII,NiII,ZnII) nitrates and ethylene glycol (EG). This method consists in the formation of carboxylate type complexes, inside the silica matrix, used as forerunners for the ferrite/silica nanocomposites. We prepared gels with different compositions, in order to obtain, through a suitable thermal treatment, the nanocomposites (Ni0.65Zn0.35Fe2O4)x–(SiO2)100–x (where x=10, 20, 30, 40, 50, 60 mass%). The synthesized gels were studied by differential thermal analysis (DTA), thermogravimetry (TG) and FTIR spectroscopy. The formation of Ni–Zn ferrite in the silica matrix and the behavior in an external magnetic field were studied by X-ray diffraction (XRD) and quasi-static magnetic measurements (50 Hz).  相似文献   

4.
Sol-gel auto-combustion method was adopted to prepare Cd2+ ions substituted Ni–Zn nanosized ferrites having a chemical formula Ni0.5Zn0.5-xCdxFe2O4 (0.0 x0.4). Their structural, electromagnetic, and dielectric properties were investigated by using XRD, FE-SEM, EDS, FTIR, VSM, and IS. The XRD analysis revealed a single-phase cubic structure of all samples. The addition of cadmium increased the lattice constant and cell volume of Ni–Zn ferrite due to the difference in the ionic radii between Cadmium (0.97 ?Å) and Zinc (0.74 ?Å). FESEM images showed irregularly shaped grain sizes in the range of 40 to 73 ?nm with random orientations and some agglomeration. The FTIR analysis also confirmed the presence of spinal ferrite phase functional groups in all samples. The saturation magnetization decreased (from 89.51 to 71.32 emu/g) with increasing cadmium content. However, the remanent magnetization and coercivity parameters increased with an increase in cadmium content. The dc resistivity as a function of the temperature of all samples was investigated, and the activation energies were found to be in the range of 0.48 to 0.51 ?eV. The dielectric loss decreased with increasing cadmium content. However, the dielectric constant and dielectric loss tangent (tan) varied non-monotonically with increased cadmium content.  相似文献   

5.
The structure and crystal phase of the nanocrystalline powders of Ni1−xZnxFe2O4 (0 ≤ x ≤ 0.5) mixed ferrite, synthesized by ethylene glycol mediated citrate sol-gel method, were characterized by X-ray diffraction and microstructure by transmission electron microscopy. Further studies by Fourier transform infrared spectroscopy were also conducted. Moreover, DC electrical properties of the prepared nanoparticles were studied by DC conductivity measurements. The response of prepared Ni1−xZnxFe2O4 mixed ferrites to different reducing gases (ethanol, hydrogen sulfide, ammonia, hydrogen and liquefied petroleum gas) was investigated. In particular, Ni0.6Zn0.4Fe2O4 composition exhibited high response to 100 ppm ethanol gas at 300 °C. Incorporation of palladium further improved the response, selectivity and response time of Ni0.6Zn0.4Fe2O4 to ethanol gas with the blue shift in the operating temperature by 25 °C.  相似文献   

6.
In this work, fabrication of Gd3+ substituted nickel spinel ferrite (NiGdxFe2-xO4) nanoparticles was carried out via co-precipitation route. X-ray powder diffraction (XRD) confirmed the spinel cubic structure of NiGdxFe2-xO4 nanoparticles. XRD data also facilitated to determine the divalent and trivalent metal cations distribution at both A and B sites of the ferrite lattice. Site radii, hopping and bond lengths were also calculated from XRD data. The spectral studies elucidated the formation of cubic spinel ferrite structure as well as stretching vibrations of M–O (metal–oxygen) bond at A and B sites of ferrites, represented by two major bands υ1 and υ2 respectively. FESEM analysis confirmed the irregular morphology of NiGdxFe2-xO4 nanoparticles. EDX spectrographs estimated the elemental compositions. The dielectric attributes were explained on the basis of the Debye-relaxation theory and Koop’s phenomenological model. At higher applied frequencies (AC) no prominent dielectric loss was observed. Magnetic parameter variations can be attributed to the substitution of the rare earth cations having larger ionic radii as compared to the radii of Fe3+ ions. Moreover, spin canting, magneto-crystalline anisotropy and exchange energy of electrons also helped in magnetic evaluation. Due to small coercivity values NiGdxFe2-xO4 nanoparticles can be employed significantly in high-frequency data storage devices.  相似文献   

7.
Summary Ni1-xZnxFe2O4 (0≤x≤1) mixed ferrite nanoparticles encapsulated with amorphous-SiO2 were prepared by a wet chemical method. Particle sizes were controlled to range from 2.6 to 33.7 nm by heat treatment, and the particle size dependence of saturation magnetization Ms was investigated for the x=0.5 region. The Ms value decreased abruptly for particle sizes below about 6 nm. From the temperature dependence of the magnetization under field-cooled and zero-field-cooled conditions, blocking temperatures Tb were observed to be between 28 and 245 K depending on the particle size. At the blocking temperature, the superparamagnetic spins in the particle are supposed to be blocked against the thermal fluctuation energy. A smaller particle volume causes a lower blocking temperature; so an extremely small particle would be strongly affected by thermal fluctuation.  相似文献   

8.
Nanocrystalline Ni-substituted Zn ferrites with compositions of NixZn1?xFe2O4 (x = 0–1.0) were synthesized by sol–gel auto-combustion method using metal nitrate as the reactants. Diethanolamine was selected as the fuel instead of conventional fuels such as urea, citric acid, tartaric acid or glycine. Characterization of after-calcined ferrite samples were conducted in terms of crystal structure, molecular vibrations, morphology and magnetic properties through X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscope and vibrating sample magnetometer analysis, respectively. The photocatalytic activities of these ferrites were studied in term of degradation of Rhodamine B under daylight-irradiation. The corresponding results indicate that nickel loading content has significant effect on physical, magnetic, optical and photocatalytic properties of the ferrite. Comparing to the undoped Zn ferrite, Ni0.6Zn0.4Fe2O4 shows the enhancement in photocatalytic activity accompanying the degradation of Rhodamine B aqueous solution up to 77 % within 4 h. The result suggests the feasibility of this material as potential sunlight-activated photocatalyst in wastewater treatment and environment cleaning applications.  相似文献   

9.
Methods of X-ray phase analysis (XRPA) and differential thermogravimetry in a magnetic field (DTG(M)) are used to investigate the phase composition of Li0.5(1?x)Fe2.5?0.5x Zn x O4 (x Zn?=?0.2, 0.4, and 0.6) ferrite spinels synthesized at a temperature of 700?°C during 120?min by thermal annealing of a reagent mixture in a furnace and heating of the mixture using high-power beam of accelerated electrons with energy of 2.4?MeV. Thermal ferritization of all compositions leads to the formation of phases whose composition is close to simple monoferrites. Lithium?Czinc ferrite phases are formed during annealing under electron irradiation. It is concluded that the rate of controllable diffusion interaction of monoferrite phases significantly increases under conditions of high-power electron irradiation.  相似文献   

10.
Conditions were established and individual and mixed ferrites with the general formula CuxZn1?xFe2O4 (x=0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 1.0) were synthesized from the CuO?ZnO?Fe2O3 system. X-ray phase analysis, Mössbauer spectroscopy and microscopic examinations revealed that the obtained ferrites are monophase samples. A magnetic device was attached to the Q-Derivatograph (MOM, Hungary) and successfully used for sample investigation in a magnetic field, and in particular for Curie (Neel) temperature determination. The ferrite composition and the thermal treatment conditions were shown to correlate with the Neel temperature of the synthesized ferrites.  相似文献   

11.
Nanoparticles of the spinel ferrite, Co0.6Ni0.4Fe2O4 have been synthesized by the precursor combustion technique. This synthetic route makes use of a novel precursor viz. metal fumarato hydrazinate which decomposes autocatalytically after ignition to yield nanosized spinel ferrite. The X-ray powder diffraction of the ??as prepared?? oxide confirms the formation of monophasic nanocrystalline cobalt nickel ferrite. The thermal decomposition of the precursor has been studied by isothermal, thermogravimetric and differential thermal analysis. The precursor has also been characterized by FTIR, and chemical analysis and its chemical composition has been fixed as Co0.6Ni0.4Fe2(C4H2O4)3·6N2H4. The Curie temperature of the ??as prepared?? oxide was determined by ac susceptibility measurements.  相似文献   

12.
The crystal structure and magnetic properties of the materials FexNi8-xSi3 with 0 ≤ x ≤ 8 have been investigated to estimate any possible magnetocaloric effect and compare it to that in known magnetocalorics. Two structural ranges could be identified in this system by X-ray and neutron diffraction. The structure of the samples with 0 ≤ x ≤ 4 is related to the trigonal structure of Ni31Si12. Doubled c lattice parameters compared to the one in Ni31Si12 are observed in the samples with x = 2 and x = 3. The average structure of Fe2Ni6Si3 has been determined by X-ray single-crystal diffraction. The compounds with the compositions 5 ≤ x ≤ 8 crystallize in cubic Fe3Si-type structure. Magnetic measurements have shown that the compound Fe3Ni5Si3 displays a phase transition close to room temperature. However, its magnetocaloric effect is much smaller than the one in the promising magnetocaloric materials.  相似文献   

13.
Nanoparticles of the spinel ferrite, Co1?x Ni x Fe2O4 (x?=?0, 0.2, 0.3) have been synthesized by the precursor combustion technique. Novel precursors of metal fumarato-hydrazinate have been employed to yield the nanosized spinel ferrite. A characteristic feature of these precursors is that they decompose autocatalytically after ignition to give the monophasic nanocrystalline ferrite. This fact is corroborated by X-ray powder diffraction analysis. The thermal decomposition pattern of the precursors has been studied by isothermal thermogravimetric and differential thermal analysis. In order to fix the chemical composition, the precursors have been characterized by FTIR and chemical analysis and their chemical composition has been fixed accordingly. The Curie temperature of the ??as-prepared?? oxide was determined by alternating current susceptibility measurements.  相似文献   

14.
基于尖晶石晶体结构信息,本文采用热力学三亚晶格模型,将材料热力学计算和第一性原理计算相结合,研究了ZnxMn1-x Fe2O4和NixMn1-xFe2O4立方相中的Zn2+、Ni2+、Mn2+以及Fe3+在8a和16d亚晶格上的占位有序化行为。结果表明:在锰铁氧体中,室温下Mn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;随着热处理温度升高,在1 273 K达到热处理平衡时的占位构型为(Fe0.093+Mn0.912+)[Fe1.913+Mn0.092+]O4,在热处理温度升至1 473 K时,达到热处理平衡时的占位构型为(Fe0.113+ Mn0.892+)[Fe1.893+Mn0.112+]O4,均与实验结果符合较好。在锌铁氧体中,室温下Zn2+完全占据在8a亚晶格上,Fe3+完全占据在16d亚晶格上,属于正尖晶石结构;在热处理温度较高时,Zn2+和Fe3+发生部分置换,符合实验结果。在镍铁氧体中,半数的Fe3+在室温下占据在8a亚晶格上,Ni2+与剩下另一半的Fe3+共同占据在16d亚晶格上,仅在热处理温度较高的时候发生微弱变化,亦与已有的实验结果吻合。在此基础上,本文进一步通过热力学预测建立了立方相尖晶石结构的ZnxMn1-xFe2O4、NixMn1-xFe2O4复合体系中阳离子占位行为与热处理温度对占位的影响。  相似文献   

15.
The composite/nanocomposite powders of Mn0.5Ni0.5Fe2O4/Fe type were synthesized starting from nanocrystalline Mn0.5Ni0.5Fe2O4 (D = 7 nm) (obtained by ceramic method and mechanical milling) and commercial Fe powders. The composites, Mn0.5Ni0.5Fe2O4/Fe, were milled for up to 120 min and subjected to heat treatment at 600 °C and 800 °C for 2 h. The manganese-nickel ferrite/iron composite samples were subjected to differential scanning calorimetry (DSC) up to 900 °C for thermal stability investigations. The composite component phases evolution during mechanical milling and heat treatments were investigated by X-ray diffraction technique. The present phases in Mn0.5Ni0.5Fe2O4/Fe composite are stable up to 400–450 °C. In the temperature range of 450-600 °C, the interdiffusion phenomena occurs leading to the formation of Fe1?xMnxFe2O4/Ni–Fe composite type. The new formed ferrite of Fe1?xMnxFe2O4 type presents an increased lattice parameter as a result of the substitution of nickel cations into the spinel structure by iron ones. Further increases of the temperature lead to the ferrite phase partial reduction and the formation of wustite-FeO type phase. The spinel structure presents incipient recrystallization phenomena after both heat treatments (600 °C and 800 °C). The mean crystallites size of the ferrite after heat treatment at 800 °C is about 75 nm. After DSC treatment at 900 °C, the composite material consists in Fe1?xMnxFe2O4, Ni structure, FeO, and (NiO)0.25(MnO)0.75 phases.  相似文献   

16.
Nanocomposites of ferrite and ferroelectric phases are attractive functional ceramic materials. In this work, the nanocomposite Ni1−x Co x Fe2O4–BaTiO3(x = 0.2, 0.3, 0.4, 0.5) fibers with fine diameters of 3 ~ 7 μm and high aspect ratios were synthesized by the organic gel-thermal decomposition process from the raw materials of citric acid and metal salts. The structure, thermal decomposition process and morphologies of the gel precursors and the resultant fibers derived from thermal decomposition of the gel precursors were characterized by Fourier transform infrared spectroscopy, thermogravimetric differential thermal analysis, X-ray diffraction and scanning electron microscopy. The magnetic properties of the nanocomposite fibers were measured by vibrating sample magnetometer. The nanocomposite fibers of ferrite Ni1−x Co x Fe2O4 and perovskite BaTiO3 are formed at the calcination temperature of 900 °C for 2 h. The average grain sizes of Ni1−x Co x Fe2O4 and BaTiO3 in the nanocomposite fibers increase from about 15 nm to approximately 67 nm with the increasing calcination temperatures from 900 to 1,180 °C. The saturation magnetization of the nanocomposite Ni1−x Co x Fe2O4–BaTiO3(x = 0.2, 0.3, 0.4, 0.5) fibers increases with the increase of grain sizes of Ni1−x Co x Fe2O4 and Co content, while the coercivity reaches a maximum value at the single-domain size of about 65 nm of Ni0.5Co0.5Fe2O4 obtained at the calcination temperature of 1,100 °C.  相似文献   

17.
Zusammenfassung Aus einer Reihe gemeinsam gefällter und in siedendem Wasser gealterter Hydroxide, deren Mischungsverhältnis die Bildung von Cd x Fe1–x [Ni1–x Fe1+x ]O4-Ferriten möglich machte, wurden Präparate erhalten, welche charakteristische Sättigungs-Magnetísierungskurven zeigen. Röntgenographische Analyse und magnetische Untersuchungen zeigten, daß der primäre Ferromagnetismus dieser Präparate dem -Fe2O3 zuzuschreiben ist.
Studies of the magnetostructural properties of coprecipitated hydroxides of Cd2+, Ni2+ and Fe3+
From a series of coprecipitated hydroxides, aged by boiling in water, and in which the mixing proportions enabled the formation of Cd x Fe1–x [Ni1–x Fe1+x ]O4-ferrites, preparations were obtained which show characteristic saturation magnetization curves. X-ray analysis and magnetic studies showed that the primary ferromagnetism of these preparations must be assigned to -Fe2O3.


Mit 6 Abbildungen  相似文献   

18.
Layered double hydroxides (LDHs) containing Cd(II), Al(III), and Fe(III) in the brucite-like layers with different starting Fe/Al atomic ratios and with nitrate as counteranion have been prepared following the coprecipitation method at a constant pH value of 8. An additional Cd(II),Al(III)-LDH sample interlayered with hexacyanoferrate(III) ions has been prepared by ionic exchange at pH 9. The samples have been characterized by elemental chemical analysis, powder X-ray diffraction (PXRD), and FT-IR spectroscopy. Their thermal stability has been assessed by thermogravimetric and differential thermal analyses (TG-DTA) and mass spectrometric analysis of the evolved gases. The PXRD patterns of the solids calcined at 800 °C show diffraction lines corresponding to Cd(Al)O and spinel-type materials, which precise nature (CdAl2O4, Cd1−xFe2+xO4, or CdxFe2.66O4) depends on location and concentration of iron in the parent material or precursor.  相似文献   

19.
Ni0.5−xCuxZn0.5Fe2O4 (0.0≤x≤0.5) ferrite nanofibers with diameters of 80-160 nm have been prepared by electrospinning and subsequent heat treatment. Both the average grain size and lattice parameter are found to increase with the addition of copper. Fourier transform infrared spectra indicate that the portion of Fe3+ ions at the tetrahedral sites move to the octahedral sites as some of the substituted Cu2+ ions get into the tetrahedral sites. Vibrating sample magnetometer measurements show that the coercivity of these ferrite nanofibers decreases with increasing Cu concentration, whereas the specific saturation magnetization initially increases, reaches a maximum value at x=0.2 and then decreases with the Cu content further increase. Notable differences in magnetic properties at room temperature (298 K) and 77 K for the Ni0.3Cu0.2Zn0.5Fe2O4 nanofibers and corresponding powders are observed and mainly arise from the grain size and morphological variations between these two materials.  相似文献   

20.
Cr-substituted polycrystalline Ba2(In2-xCrx)O5·(H2O)δ powders (0.04 ≤ x ≤ 0.60) were synthesized by solid state reaction to investigate the relation of crystal structure, thermochemical, magnetic, and optical properties. The Cr-substitution results in an unit cell expansion and formation of the higher-symmetric tetragonal phase together with increased oxygen and hydrogen contents. Magnetic property measurements reveal that the diamagnetic pristine Ba2In2O5·(H2O)δ becomes magnetically ordered upon Cr-substitution. By UV–vis spectroscopy a gradual shift of the absorption-edge energy to lower values was observed. Numerical calculations showed that the observed bandgap narrowing was ascribed to the Cr induced states near the Fermi level. The correlation between the changes of crystal chemistry, magnetic, and optical properties of Cr-substituted Ba2(In2-xCrx)O5·(H2O)δ can be explained by the replacement of In by Cr. Consequently, an enhanced photocatalytic CO2 reduction activity was observed with increasing Cr substitution, compatible with the state-of-the-art high surface area TiO2 photocatalyst (P-25).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号