首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
BaTiO3/bismaleimide/epoxy/glass fiber reinforced composites were prepared using E-glass fiber (E-GF) and silane coated E-glass fiber (SC-EGF) separately as reinforcement. BaTiO3 nanoparticles were prepared by hydrothermal method. Results show that the addition of BaTiO3 nanoparticles has significant effects on the mechanical and dielectric properties of the composite. Both E-GF and SC-EGF reinforced BaTiO3/bismaleimide/epoxy composites with 2 wt percentages of BaTiO3 nanoparticles showed improved tensile strength, flexural strength and dielectric constant and those with 3% showed high dielectric strength indicating this composition is more adaptable for high voltage insulating applications. Dielectric constants and dielectric loss of the fabricated nanocomposites have been obtained at higher frequencies (in GHz) by using Vector Network Analyser at room temperature and was found to be highest for the BMI-Epoxy nanocomposite with 1% weight nanofiller.  相似文献   

2.
The glass fiber epoxy composites containing MWCNTs and Fe3O4 NPs were manufactured by composites liquid molding process. The microwave absorbing properties of single-layered and double-layered glass fiber/MWCNTs/epoxy and glass fiber/Fe3O4 NPs/epoxy composites were evaluated. The reflection loss(RL) were calculated by the measured complex permittivity and permeability using waveguide method by vector network analyzer. Based on the mechanism analysis and deficiency of single-layer absorber, the double-layered composites were fabricated by using matching layer and absorbing layer to enhance the microwave absorption performance, which can be modulated by tailoring the electromagnetic parameters and thicknesses of each layer. The optimized microwave absorbing properties of double-layered composites with minimum RL of −45.7 dB and full X-band effective absorption can be achieved when the total thickness of the matching layer and absorbing layer is 1.8 mm, which can be attributed to synergistic effect of improved impedance matching characteristic and superior microwave attenuation characteristic of the absorbing layer. The combined utilization of dielectric loss and magnetic loss absorbent and their double-layered structure design shows great design flexibility and diversity and can be a promising candidate for designing high performance microwave absorbing materials.  相似文献   

3.
Novel three-phase composites were prepared by embedding graphite nanosheets (GNs) and BaTiO3 nanoparticles into syndiotactic polystyrene (sPS) matrix via a solution blending and flocculation method. The dependences of electric and dielectric properties of the resultant sPS/BaTiO3-GNs composites on volume fractions of GNs (fGNs) and frequency were investigated. The percolation theory was employed to explain the electric and dielectric behavior of sPS/BaTiO3-GNs composite. It was found that the sPS/BaTiO3-GNs composite showed an obvious insulator-conductor transition with a much low percolation threshold of fGNs = 1.44 vol%. The dielectric permittivity of sPS/BaTiO3-GNs composite reached as high as 51.8 at 100 Hz at percolation threshold, which was about 18 and 7 times higher than that of pure sPS and sPS/BaTiO3 composite, respectively.  相似文献   

4.
NiFe2O4/T-ZnOw复合材料的制备及电磁波吸收性能   总被引:2,自引:2,他引:0  
采用铁氧体化学镀在四角氧化锌晶须(T-ZnOw)表面包覆NiFe2O4镀层,制备了NiFe2O4/T-ZnOw复合材料。利用X射线衍射仪、扫描电镜、能谱分析仪对镀覆前后T-ZnOw的结构、形貌等进行了表征。利用矢量网络分析仪研究了NiFe2O4/T-ZnOw复合材料的电磁波吸收性能。结果表明,化学镀覆后,在T-ZnOw表面包覆了尖晶石型NiFe2O4镀层,生成了NiFe2O4/T-ZnOw复合材料,该材料为磁损耗型材料。化学镀覆过程中T-ZnOw的装载量会影响复合材料的介电常数和磁导率,当T-ZnOw装载量为0.2g时,所制备的复合材料具有最大的介电常数、磁导率、介电损耗和磁损耗,当吸收层厚度达到3 mm时,反射率在14 GHz处达到-11 dB。  相似文献   

5.
Summary: Polyaniline (PANI) composites were prepared with both unmodified and amine modified MWCNTs with and without BaTiO3 through in-situ oxidative polymerization. Uniform coating of PANI on the MWCNTs and BaTiO3 surfaces was found which was evident from the Field Emission Scanning Electron Microscopic (FESEM) and High Resolution Transmission Electron Microscopic (HRTEM) images. The structure of pure and amine modified MWCNTs was identified by Fourier Transform Infrared Spectroscopy (FTIR). The thermal stability of the amine modified composite with BaTiO3 is higher than that of the unmodified composite because of the better affinity between modified MWCNTs and polymer matrix and due to the higher stability of barium titanate itself. The capacitance of amine modified MWCNTs and BaTiO3 composites was less than that of the pure MWCNTs composites but the thermal stability increased in amine modified MWCNTs and BaTiO3 composites with respect to the pure MWCNTs composites. The maximum capacitance and energy density values were found in MWCNT/PANI composites which were equal to 523.20 F/g and 142.83 Wh/kg respectively at a scan rate of 10mv/s. Maximum power density was found to be 5147.70 W/kg in the same composite at a scan rate of 200 mv/s.  相似文献   

6.
The magnesium ferrite nanorods/graphene (MgFe2O4 NR/G) composites were prepared by a facile one‐step surfactant‐assisted solvothermal method. The structure and morphology of as‐prepared composite materials were characterized by electron microscopy, energy dispersive spectrometry, Raman spectrometry, X‐ray diffraction, FT‐IR and X‐ray photoelectron spectroscopy. The homogeneous MgFe2O4 nanorods with a typical diameter of about 100 nm were well distributed on graphene. The electromagnetic parameters were measured using a vector network analyzer. A minimum reflection loss (RL) of ?40.3 dB was observed at 14.9 GHz with a thickness of 3 mm, and the effective absorption frequency (RL  <   ? 10 dB) ranged from 12.0 to 18.0 GHz, indicating the remarkable microwave absorption performance of the MgFe2O4 NR/G composites. The absorbing property of as‐obtained composites was better than that of the pure MgFe2O4 nanorods. The synergistic effect of MgFe2O4 and graphene was responsible for the enhanced absorbing performance.  相似文献   

7.
首先对羰基铁进行点腐蚀得到多孔羰基铁,然后采用St?ber法和原位聚合法将SiO_2和导电高分子聚吡咯包覆在多孔羰基铁表面,制备多孔羰基铁/SiO_2/聚吡咯电磁复合吸波材料。采用XRD、SEM、TEM、FT-IR对样品结构、微观形貌进行了表征,在网络分析仪中采用同轴法测试样品电磁参数,并根据传输线理论研究了2~18 GHz微波频段内吡咯含量及涂层厚度对样品吸波性能的影响。实验结果表明:制备的多孔羰基铁/SiO_2/聚吡咯复合电磁吸波材料具有核壳结构;随着吡咯加入量的增加,吸波材料吸收峰逐渐向低频方向移动;当涂层厚度为3.5 mm、吡咯加入量为6%(w/w)时,在9.44~17.56 GHz范围内反射率均低于-10 d B,频带宽度为8.12 GHz,损耗反射率达到-23 d B。良好的吸波性能归因于复合物有效的阻抗匹配特性及多重界面极化效应,多孔羰基铁/SiO_2/聚吡咯是一种轻质、宽频、强吸收的吸波材料。  相似文献   

8.
Rubber composites were prepared for elastomer slab by mixing barium titanate (BaTiO3), carbon nanotube (CNT), carbon black (CB), and room-temperature vulcanized (RTV) silicone rubber. An electrode was prepared from composite for energy harvesting with fillers such as CB and CNT, and RTV thinner was used to improve the processing of the specimen. At 50 phr of BaTiO3, there is an increase in compressive modulus by 180%. There was a correlation between prestrain and biaxial strain in enhancing the energy generation. After poling of the rubber composite containing 50 phr of BaTiO3 at 11 kV/mm, the energy harvesting was increased at all strains. In durability test at 70 phr of BaTiO3 for 60% cyclic biaxial strain, the drop in voltage from the piezoelectric energy harvesting was almost zero for 3000 cycles.  相似文献   

9.
《Arabian Journal of Chemistry》2020,13(11):7978-7989
This work presents a study of microwave absorption properties of PAni/Fe3O4/PVA nanofiber composites with different ratio of Fe3O4 nanoparticles. The morphology of the composites nanofibers study by Field Emission Scanning Electron Microscopes (FESEM) and Transmission Electron Microscope (TEM) showed that the low content of Fe3O4 nanoparticles presence in the composites nanofibers indicates very much uniform surface, in the composites nanofiber without many bends, but some bends develop at higher content of Fe3O4 nanoparticles as indicated in the TEM image. Image-J software was used to further investigate the diameter of the composites nanofiber and found to be in the range of 152 to 195 nm. The nanofiber composites show excellent electric and magnetic properties and therefore vary with the addition of Fe3O4 nanoparticles in the composites nanofiber. In addition the PAni/Fe3O4/PVA composites nanofibers were further characterized by X-ray diffraction spectra (XRD) and Four Transformation infrared spectra (FTIR). The XRD pattern shows the presence of PAni nanotubes containing Fe3O4 nanoparticles by indicating peaks at 23.4⁰ and 35.43⁰ which was further supported by FTIR analysis. Microwave vector network analyzers (MVNA) were used to estimate the microwave absorption properties of the composites nanofibers. The absorption parameters was found to be −6.4 dB at 12.9 GHz within the range of X-band microwave absorption frequency, this reflection loss is attributed to the multiple absorption mechanisms as a result of the improved of impedance matching between dielectric and magnetic loss of the absorbent materials demonstrating that these materials can be used as protective material for electromagnetic radiation.  相似文献   

10.
By dipping-lifting in sol–gel solution and reducing process, the TiO2 composite film on the glass plate was first prepared. Then, the PbSe/BaTiO3/TiO2 composite film was fabricated by interface reaction with BaTiO3 and PbSe on the surface of TiO2 composite film. The characterization results show that the uniform porous TiO2 film is made up of the anatase crystal, and the PbSe/BaTiO3/TiO2 composite film is constructed by doping or depositing BaTiO3 and PbSe nanoparticles on the surface of TiO2 film. The photoelectrochemical measurement results indicate that the PbSe/BaTiO3/TiO2 composite film has an interesting photoelectrochemical conversion property.  相似文献   

11.
The aim of this study is to improve the dielectric and mechanical properties of HDPE/BaTiO3 composites by binary BaTiO3 particles, when the volume fraction of BaTiO3 is constant. In this study, it was found that the pack density of binary BaTiO3 particles in HDPE/BaTiO3 composite relies on particle ratio and volume fraction of small particles. It is found that the addition of 50 vol % 1600 nm BaTiO3 particles can boost the dielectric constant of HDPE control from 2 to 30 (14 times higher) at 40 Hz and 19 (8.5 times higher) at 40 MHz, respectively. When the particle ratio was 4, the substitution of 10 vol % 1600 nm BaTiO3 particles by 10 vol % 400 nm BaTiO3 particles can further enhance the dielectric constant of HDPE/L‐BT (10/10) from 30 to 50 (67% increase) at 40 Hz and from 19 to 42 (121% increase) at 40 MHz, respectively, without greatly influencing the volume resistivity of HDPE composites. In addition, the thermal conductivity of HDPE with binary BaTiO3 particles were all above 2.0 W/(m•K). © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1101–1108  相似文献   

12.
In the present work a series of poly(vinylidene fluoride)/BiFeO3/poly(ethylene glycol) composite films were prepared by solvent casting method with poly(vinylidene fluoride) as polymer matrix, bismuth ferrite as ceramic filler and poly(ethylene glycol) as binding agent as well as enhancer. The structural analysis of the composite films by X-ray diffraction confirms that the composites have a distorted rhombohedral structure. The micro-structural analysis shows that the use of poly(ethylene glycol)in the composite films enhances the homogeneity as well as compatibility of BiFeO3 particles within the poly(vinylidene fluoride) matrix. The dielectric and electrical study done by impedance analyzer reveals that with an increase in poly(ethylene glycol) concentration, there is a subsequent increase in dielectric constant as well as AC electrical conductivity. Finally, the ferroelectric behavior of the composite confirms that the ferroelectric properties of the composites are enhanced by the addition of BiFeO3 with an increase in poly(ethylene glycol) concentrations. These preliminary results give an idea for possible applications of this type of composites in the field of electronic applications.  相似文献   

13.
Flexible and lead-free piezoelectric nanocomposites were synthesized with BaTiO3 nanowires (filler) and poly(vinylidene fluoride) (PVDF) (matrix), and the piezoelectric performances of the composites were systematically studied by varying the aspect ratio (AR) and volume fraction of the nanowire and poling time. BaTiO3 nanowires with AR of 18 were synthesized and incorporated into PVDF to improve the piezoelectric performance of the composites. It was found that high AR significantly increased the dielectric constant up to 64, which is over 800% improvement compared to those from the composites containing spheroid shape BaTiO3 nanoparticles. In addition, the dielectric constant and piezoelectric coefficient were also enhanced by increasing the concentration of BaTiO3 nanowires. The piezoelectric coefficient with 50-vol% BaTiO3 nanowires embedded in PVDF displayed 61 pC/N, which is much higher than nanocomposites with spheroid shape BaTiO3 nanoparticles as well as comparable to, if not better, other nanoparticle-filled polymer composites. Our results suggest that it is possible to fabricate nanocomposites with proper mechanical and piezoelectric properties by utilizing proper AR fillers.  相似文献   

14.
In this work, spherical flower-shaped composite carbonyl iron powder@MnO2 (CIP@MnO2) with CIP as the core and ultrathin MnO2 nanosheets as the shell was successfully prepared by a simple redox reaction to improve oxidation resistance and electromagnetic wave absorption properties. The microwave-absorbing properties of CIP@MnO2 composites with different filling ratios (mass fractions of 20%, 40%, and 60% after mixing with paraffin) were tested and analyzed. The experimental results show that compared with pure CIP, the CIP@MnO2 composites have smaller minimum reflection loss and a wider effective absorption bandwidth than CIP (RL < −20 dB). The sample filled with 40 wt% has the best comprehensive performance, the minimum reflection loss is −63.87 dB at 6.32 GHz, and the effective absorption bandwidth (RL < −20 dB) reaches 7.28 GHz in the range of 5.92 GHz–9.28 GHz and 11.2 GHz–15.12 GHz, which covers most C and X bands. Such excellent microwave absorption performance of the spherical flower-like CIP@MnO2 composites is attributed to the combined effect of multiple beneficial components and the electromagnetic attenuation ability generated by the special spherical flower-like structure. Furthermore, this spherical flower-like core–shell shape aids in the creation of discontinuous networks, which improve microwave incidence dispersion, polarize more interfacial charges, and allow electromagnetic wave absorption. In theory, this research could lead to a simple and efficient process for producing spherical flower-shaped CIP@MnO2 composites with high absorption, a wide band, and oxidation resistance for a wide range of applications.  相似文献   

15.
通过在氩气中碳化含有乙酰丙酮金属盐的电纺聚丙烯腈纳米纤维合成了镶嵌(Fe1-xCox)0.8Ni0.2(x=0.25,0.50,0.75)合金纳米粒子的碳纳米纤维,用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)和矢量网络分析仪(VNA)等对其物相、形貌、微观结构、静磁及电磁特性进行表征和分析,并根据传输线理论模拟计算了2~18 GHz频率范围内的微波吸收性能。结果表明:所制备的复合纳米纤维具有典型的铁磁特征,由无定形碳、石墨和面心立方结构Fe-Co-Ni合金三相组成,原位形成的合金纳米粒子沿纤维轴向均匀分布,且被有序石墨层所包覆。磁损耗和介电损耗间的协同作用及特殊的核/壳微观结构使仅含5%(w/w)的(Fe1-xCox)0.8Ni0.2/C复合纳米纤维的硅胶基吸波涂层表现出优异的微波吸收性能。当涂层厚度为1.1~5.0 mm时,x=0.25、0.50和0.75的样品最小反射损耗分别达到-78.5、-80.2和-63.4 d B,反射损耗在-20 d B以下的吸收带宽分别为14.9、14.8和14.5 GHz,几乎覆盖整个S波段至Ku波段。通过调节合金的组成可对材料的电磁特性及微波吸收性能进行一定程度的控制。  相似文献   

16.
High dielectric constant is highly desirable in capacitors and memory devices. In this work, oleic acid (OA)‐capped BaTiO3 nanocrystals were synthesized by a two‐phase approach. Polyimide (PI)/BaTiO3‐nanocrystal composite thin films with high dielectric constant have been successfully fabricated. The morphologies and dielectric properties of the hybrid films were exploited. The results showed that BaTiO3 nanocrystals can be uniformly dispersed in the PI thin films owing to the surface modification of OA‐capped BaTiO3 nanocrystals. It was found that the dielectric constant of composite film varies with the volume fraction of BaTiO3 nanocrystals and sintering temperatures and reaches a maximum value of 44.1, which is around 13 times higher than that of pristine PI thin film (3.2). These results demonstrated that PI/BaTiO3‐nanocrystal composite films have considerable application potential in microelectronic fields.  相似文献   

17.

Hydrophobic silica aerogels were prepared via a sol‐gel process by surface modification at ambient pressure. Nonwoven fibers were distributed inside the silica aerogels as a composite to act as a supporting skeleton which increased the mechanical property of the silica aerogels. The morphology and pore structure of the composites were characterized by scanning electron microscopy (SEM) and N2 adsorption analyzer. The contact angle and the adsorption capacities of the composites were also determined. The results show that silica aerogels dispersed uniformly and maintained high porosity in the aerogel‐fiber composites. They have excellent hydrophobic properties and are excellent adsorptive materials.  相似文献   

18.
Sm-doped strontium ferrite nanopowders (SrSm0.3Fe11.7O19) and their composites of polyaniline (PANI)/SrSm0.3Fe11.7O19 with 10 wt% and 20 wt% ferrite were prepared by a sol–gel method and an in-situ polymerization process, respectively. The structure, magnetic properties and microwave absorption properties of the samples were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectra (FT-IR), transmission electron microscope (TEM), vibrating sample magnetometer (VSM) and vector network analyzer, respectively. The particle size of SrSm0.3Fe11.7O19 was about 35 nm by using XRD. The ferrite successfully packed by PANI. PANI/SrSm0.3Fe11.7O19 possessed the best absorption property with the optimum matching thickness of 3 mm in the frequency of 2–18 GHz. The value of the maximum reflection loss (RL) were −26.0 dB at 14.2 GHz with the 6.5 GHz bandwidth and −24.0 dB at 13.8 GHz with the 7.9 GHz bandwidth for the samples with 10 wt% and 20 wt% ferrite, respectively.  相似文献   

19.
CuTAPc-Fe3O4纳米复合粒子及其漆酶固定化研究   总被引:1,自引:0,他引:1  
黄俊  周菊英  肖海燕  龙胜亚  王军涛 《化学学报》2005,63(14):1343-1347
漆酶的固定化研究对基于漆酶催化的光纤生物传感器具有十分重要的意义. 制备了四氨基酞菁铜(CuTAPc)-Fe3O4纳米复合粒子, 并用红外(IR)、场发射扫描电镜(FEG-SEM)、X射线衍射(XRD)、能谱、粒径仪等对其进行了表征. 结果表明形成了以CuTAPc包覆在Fe3O4纳米粒子表面的纳米复合粒子, 粒子呈现不规则球形, 且分布均匀, 粒子平均粒径在50 nm左右. 用此纳米复合粒子通过戊二醛交联法固定了漆酶, 固定后的酶比游离酶具有更好的贮存稳定性及操作稳定性. 这为研制高性能的光纤生物传感器打下了较好的基础.  相似文献   

20.
The core–nanoshell composite materials with magnetic fly-ash hollow cenosphere as core and nano SmFeO3 as shell were synthesized by high-energy ball milling method. The magnetic fly-ash hollow cenosphere, samarium nitrate, and iron nitrate were used as raw materials. The synthesis and growth kinetics of the composite materials were investigated using the thermogravimetry and differential thermal analysis (TG–DTA) at different heating rates. The results show that the precursor of the composite materials decomposes in three steps. The apparent activation energy of each stage was calculated using the Doyle–Ozawa and Kissinger methods. The reaction order, frequency factor, and rate equations were also determined. The activation energy of the nano crystallite growth is calculated to be 16.12 kJ mol?1 according to kinetics theory of nano crystallite growth. It can be inferred that the crystallite grows primarily by means of an interfacial reaction during the thermal treatment. The magnetic properties and microwave absorbing properties of samples were analyzed by the vibrating sample magnetometer analysis and vector network analyzer. The results indicated that the exchange coupling interaction happens between ferrite of magnetic fly-ash hollow cenosphere and nanosized ferrite coating, which cause outstanding magnetic properties. In the frequency between 1 MHz and 1 GHz, the absorbing effectiveness of the composite absorbers can achieve ?32 dB. The magnetic properties of the composite material are better than those of single phase. So it is consistent with requirements of the microwave absorbing material at the low-frequency absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号