首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Research carried out in the last 40 years has shown the scientific importance of groundwater circulation both in the Northern Adriatic sea bed and within the uppermost sedimentary layers of the Venice lagoon and of the Venice plain. Hydrodynamic processes are strictly controlled by a well-cemented sedimentary horizon lying under and around Venice (‘caranto’), which plays the role of regional aquitard. This layer was attributed to the subaerial cementation of the Flandrian (8–10?ka Before Present) sedimentary surface. The caranto is generalised as a continuum horizon, being an easy explanation for several environmental, hydrogeological and geotechnical problems, e.g., a base layer for landfills, a confining layer for deep aquifers and the best substratum for locating the oak wooden pile-dwelling needed to support the largest buildings.

The preservation of the isotope signal within the deep aquifers and aquiclude system records the changes in surface and groundwater characteristics and suggests the present and past recharge regimes. In this region, the heavily perturbed hydrodynamic conditions do not allow for the use of isotopic signals to derive a correct reconstruction of the present recharge. The perturbations induced by the intensive anthropogenic activity force to follow climate evolution by considering deep groundwater and pore waters. In addition, the presence of carbonatic rocks inside terrigeneous sediments affects the reconstruction of the past. Results indicate that carbonatic rocks are created by seepage, through the sediments, of gaseous carbon compounds from decaying organic layers. The gas interactions with the intra-sedimentary saline and fresh waters produce CO2, inducing the cementation of the sediments.  相似文献   

2.
A hydrogeochemical and stable isotope study (2H and 18O) was carried out in the Cuvelai-Etosha Basin in order to characterize available groundwater and to identify possible recharge mechanisms for the perched aquifers. Data were collected during seven field campaigns between 2013 and 2015 from a total of 24 shallow and deep groundwater hand-dug wells. In the investigated groundwaters, hydrogencarbonate is the dominating anion in both well types, whereas cations vary between calcium and magnesium in deep wells, and sodium and potassium in shallow wells. Groundwater chemistry is controlled by dissolution of carbonate minerals, silicate weathering and ion exchange. Stable isotopic composition suggests that deep groundwater is recharged by high-intensity/large rainfall events, whereas the shallow wells can even be recharged by less-intense/small rainfall events. Water in deep wells reflect a mixture of water influenced by evaporation during or before infiltration and water that infiltrated through fast preferential pathways, whereas shallow wells are strongly influenced by evaporation. The findings of this research contribute to improve the understanding of hydrogeochemistry, recharge paths and temporal variations of perched aquifers.  相似文献   

3.
The dominant transport mechanisms controlling the migration of contaminants in geologic media are advection and molecular diffusion. To date, defining which transport mechanism dominates in saturated, non-lithified sediments has been difficult. Here, we illustrate the value of using detailed profiles of the conservative stable isotope values of water (δ2H and δ18O) to identify the dominant processes of contaminant transport (i.e. diffusion- or advection-dominated transport) in near-surface, non-lithified, saturated sediments of the Interior Plains of North America (IPNA). The approach presented uses detailed δ18O analyses of glacial till, glaciolacustrine clay, and fluvial sand core samples taken to depths of 11–50 m below ground at 22 sites across the IPNA to show whether transport in the fractured and oxidized sediments is dominated by advection or diffusion. Diffusion is by far the dominant transport mechanism in fine-textured lacustrine and glacial till sediments, but lateral advection dominates transport in sand-rich sediments and some oxidized, fine-textured lacustrine and glacial till sediments. The approach presented has a number of applications, including identifying dominant transport mechanisms in geomedia and potential protective barriers for underlying aquifers or surface waters, constraining groundwater transport models, and selecting optimum locations for monitoring wells. These findings should be applicable to most glaciated regions of the world that are composed of similar hydrogeologic units (i.e. low K clay till layers overlain by higher K coarse-textured aquifers or weathered clay till layers) and may also be applicable to non-glaciated regions exhibiting similar hydrogeologic characteristics.  相似文献   

4.
The isotope balance approach, which used (18)O content of waters, has been used as an independent tool to estimate inflow to Lake Tana of surface water flows from ungauged catchment of Lake Tana (50% of the total area) and evaporative water loss in the vast plains adjoining the lake. Sensitivity analysis has been conducted to investigate the effects of changes in the input parameters on the estimated flux. Surface water inflow from ungauged catchment is determined to be in the order of 1.698×10(9) m(3)a(-1). Unaccounted water loss from the lake has been estimated at 454×10(6) m(3)a(-1) (equivalent to 5% of the total via surface water). Since the lake is water tight to groundwater outflow, the major error introduced into the water balance computation is related to evaporative water loss in water from the flood plains. If drained, the water which is lost to evaporation can be used as an additional water resource for socio-economic development in the region (tourism, agriculture, hydropower, and navigation). Hydrological processes taking place in the vast flood plains of Lake Tana (origin of salinity, groundwater surface water interaction, origin of flood plain waters) have been investigated using isotopes of water and geochemistry as tracers. The salinity of shallow groundwaters in the flood plains is related to dissolution of salts accumulated in sediments covering former evaporation pools and migration of trace salt during recharge. The waters in the flood plains originate from local rainfall and river overflows and the effect of backwater flow from the lake is excluded. Minimum linkage exists between the surface waters in the flood plains and shallow groundwaters in alluvio lacustrine sediments suggesting the disappearance of flood waters following the rainy season, which is related to complete evaporation or drainage than seepage to the subsurface. There is no groundwater outflow from the lake. Inflow of groundwater cannot be ruled out. Discharge of groundwater to the lake is presumed to take place along rocky bottom in southern sector from Quaternary volcanics covering the southern sector of the catchment.  相似文献   

5.
We present the results of an isotope (2H and 18O) and hydrogeochemical study in order to constrain the origin, recharge, and evolution of the surface and groundwater in the arid Andean realm of the Elqui watershed. The results of 2H and18O analyses of water samples obtained during our summer and winter campaigns indicate a generally meteoric origin of the river and spring waters of the watershed. The isotope signature of water of the Elqui river and its tributaries as well as that of groundwater in the coastal region fits the 2H-18O relation of delta2H =7.61delta18O+6.1. A relatively fast discharge and a quasi-closed catchment area can be asserted for water along the river flow path. The tributaries from the more arid coastal area, north of the Elqui river, differ in their isotopic signature due to evaporation and hydrochemically due to interactions with the strongly altered and fractured volcanic rocks of the basement. In the Andean zone, the18O-enriched hydrothermal spring of Ba?os del Toro exhibits the influence of water-rock interaction processes. The chemistry of the river water changes from sulphate- to chloride-rich along the river course from the high Andean mountains to the coast. The sulphate-rich character of these Andean waters reflects their passage through sulphide-rich rock massifs that were subjected to strong oxidation processes in the near superficial environment. This sulphate signature is enforced by past and present mining of precious metal epithermal deposits (e.g. those of El Indio-Tambo Au-Cu-As district), in which mineralised zones were developed during a series of Miocene magmatic-hydrothermal episodes in the Andean realm. Owing to the proximity of the lower Elqui river waters and its tributaries to the Pacific coast, the chloride character may be induced by agricultural and marine (sea spray, fog) sources. Generally, the main source of the Elqui river water is mainly attributed to surface runoff and less to contributions from the basement fractured aquifer.  相似文献   

6.
Abstract

The study is focused on the dolomite-limestone drinking water aquifers in the Bo? massif, as well as on the andesite-aquifer containing mineral water in the vicinity of Roga?ka Slatina. The catchment area is limited and both drinking and mineral waters are discharged from the same source. The increasing use of deeper aquifers means that natural springs and shallow wells have become sporadic. Consequently new techniques of investigating recharge and aquifer capacity are required which can augment classical hydrogeological methods.

Current research into the mineral and drinking water aquifers in the area of Roga?ka Slatina is based on measuring the isotopic composition of light elements, (H, C and O) as natural tracers. It can be concluded that all the groundwaters investigated are typically infiltrated meteoric water. The drinking waters are generally young and were infiltrated up to about ten years ago. The isotopic composition of oxygen is similar to recent precipitation (δ18O = -9.3 ± 1‰) and the drinking waters contain tritium. It was found that exploited mineral waters recharged aquifers during colder periods; they are only partly mixed with younger water as can be seen from the isotopic composition of oxygen and corrected 14C dating, which puts the mean ages at between around 100 and 8,000 years. With regard to the “nuclear period” (1960-64) with abnormally high tritium activities of precipitation, all the waters examined can be divided into at least three main infiltration groups depending on their measured tritium content: around 35 years old (> 80 T.U.), older (> 10 T.U.) and younger (10 to 60 T.U.). Detailed dating is possible following the above classification. Isotope exchange between rocks and water is negligible and therefore very deep circulation at the temperature conditions above 80°C does not occur. Dissolved inorganic carbon (DIC) in the drinking waters is the result of equilibrium reactions between carbonates and organically produced CO213C = - 14.5 ± ‰), while the high concentrations of DIC (δ13C = + 3 ±‰) and CO2 observed in the mineral waters are generated by low-temperature decarbonatization processes and indicate the deep origin of CO2, from where gas migrates into mineral water aquifers.

Correlation analyses between the parameters studied are performed. Useful conclusions concerning water circulation and the capacities of aquifer reservoirs are described which support the future optimal pumping of mineral and drinking water at the limited catchment area of Roga?ka Slatina and Bo?.  相似文献   

7.
In the framework of the investigation of enrichment processes of nitrate in groundwater of the Kalahari of Botswana near Serowe, recharge processes were investigated. The thick unsaturated zone extending to up to 100 m of mostly unconsolidated sediments and very low recharge rates pose a serious challenge to study solute transport related to infiltration and recharge processes, as this extends past the conventional depths of soil scientific investigations and is difficult to describe using evidence from the groundwater due to the limitations imposed by available tracers. To determine the link between nitrate in the vadose zone and in the uppermost groundwater, sediment from the vadose zone was sampled up to a depth of 15–20 m (in one case also to 65 m) on several sites with natural vegetation in the research area. Among other parameters, sediment and water were analysed to determine chloride and nitrate concentration depth profiles. Using the chloride mass balance method, an estimation of groundwater infiltration rates produced values of 0.2–4 mm a?1. The uncertainty of these values is, however, high. Because of the extreme thickness of the vadose zone, the travel time in the unsaturated zone might reach extreme values of up to 500 years and more. For investigations using groundwater, we applied the chlorofluorocarbons CFC-113, CFC-12, sulphur hexafluoride (SF6) and tritium to identify potential recharge, and found indications for some advective transport of the CFCs and SF6, which we accounted for as constituting potential active localised recharge. In our contribution, we show the potential and limitations of the applied methods to determine groundwater recharge and coupled solute transport in semi-arid settings, and compare travel time ranges derived from soil science and groundwater investigations.  相似文献   

8.
The quality of both groundwaters and surface waters that arise during flooding of abandoned lignite open pits are influenced by regional and local factors. A typical regional factor is due to oxidised sedimentary sulfides. A more local factor is the interaction of shallow water with highly saline groundwater, which is important in Merseburg-Ost (Germany). Investigation of this system is aided by the use of many environmental isotope tracers but special problems can arise. In order to reveal processes in the mine environment (shallow groundwater, lake water) and to characterise mixtures with saline groundwater results are described using the tracers deltaD, delta18O, delta13C, delta34S, 87Sr/86Sr, 3H, 14C, 39Ar, and 222Rn. Deep highly saline groundwater had a radiocarbon concentration typically below 10 pMC. The values of delta13C(DIC) are around-5 per thousand. As delta13C of the aquifer rock samples (Permian, Zechstein carbonates) was in the range of-6...+5 per thousand, residence time corrections based on delta13C are questionable. Additional checks with 39Ar, as well as results from the variationof delta18O (or deltaD) with respect to the salinity, emphasise a Holocene age; as is also the case for most mineralised groundwaters and also for water having a low delta18O (and deltaD). For saline groundwater residing in the Zechstein aquifer the measured delta34S values of about 12 per thousand are close to those expected from the literature. In contrast, the 87Sr/86Sr ratio of dissolved strontium is far from the values anticipated for the aquifer rocks despite there being proportionality between the chloride concentration and the strontium concentration. Furthermore, the proportionality is not valid in lower mineralised water. The 87Sr/86Sr ratio can, therefore, hardly be used as a tracer for the distribution of ascending saline water. The amount of salt-water coming from below into the residual quarry basins is an essential contribution to the lake inventories. Therefore, 222Rn was used to assist in determining the renewal of salt-water layers that formed in deep lake locations. In the deep zones 222Rn concentrations up to 6 Bq/l were measured but were dominantly in equilibrium with 226Ra, which was found in all higher mineralised groundwater samples. Excess radon was limited to just a few decimetres above the lake sediment surface but does not appear to be caused by continuous groundwater discharge.Hydrochemical investigations of groundwater from the Quaternary aquifer were carried out over the last six years before flooding was complete. Apart from a slight downward shift of the average sulfate concentration, other changes showed virtually no trends. An increase of the sulfate concentration was mostly correlated with a decrease of delta34S for individual sites only, but not for the whole ensemble of sampling locations. Sulfate from pyrite oxidation plays an important role but cannot be attributed unequivocally to coal mining. There are hints that the conditions closer to the basin edges may differ from those remoter parts of the flood plain.  相似文献   

9.
In the Basin and Range Province of the Southwestern U.S.A., deep carbonate groundwater has been suggested as a significant source to many overlying basin-fill alluvial aquifer systems. Notwithstanding, testing this hypothesis is limited by obtaining data from such considerable depths and complex geology.

This study uses δ2H and δ18O data from springs, rivers, and wells tapping shallow basin-fill groundwater to test the hydrochemical interpretation of deep regional carbonate groundwater flow into the basin-fill aquifers. Stable isotopic and major ion attributes of hydrochemical facies suggest basin-fill alluvial groundwater of the Lower Virgin River Basin is a mixture of precipitation recharge within the Lower Virgin River Basin or the Clover and Escalante Desert Basin northwards, and the deep carbonate flow. The data support the conclusions that in the Lower Virgin River Basin, deep carbonate groundwater is an important source to the alluvial aquifer system and likely accounts for approximately 50% of the alluvial aquifer groundwater. Na+, K+, and SO42– increase in the basin-fill alluvial groundwaters outside the Virgin River floodplain appears to be related with upwelling of deep regional groundwater, and indicating that the chemical character of the basin-fill alluvial groundwaters are related to the deeper flow systems.  相似文献   


10.
ABSTRACT

Changes in groundwater evolutionary processes due to aquifer overexploitation show a world-wide increase and have been of growing concern in recent years. The study aimed to improve the knowledge of groundwater evolutionary processes by means of stable water isotopes and hydrochemistry in a representative lake basin, Ordos energy base. Groundwater, precipitation, and lake water collected during four campaigns were analysed by stable isotopes and chemical compositions. Results showed that temperature effect predominated the isotope fractionation in precipitation, while evaporation and inadequate groundwater recharge were the key factors explaining high salinity and isotopic enrichment in lake water. Additionally, the Kuisheng Lake was a preferential area of groundwater recharge, while the Subei Lake received less sources from underlying aquifer due to the combined effects of low permeable zone and upstream groundwater captured by the production wells. The homogeneous isotope signatures of groundwater may be ascribed to the closely vertical hydraulic connectivity between the unconfined and the confined aquifers. Isotopically enriched groundwater pumping from well field probably promoted isotopic depletion in groundwater depression cone. These findings not only provide the conceptual framework for the inland basin, but also have important implications for sustainable groundwater management in other groundwater discharge basins with arid climate.  相似文献   

11.
Summary The results of an investigation about the heavy-metal distribution in pore waters of an estuarine shallow-water system (Cona Marsh, Venice Lagoon) are described. The area was sampled for surface and subsurface sediments; pore waters were extracted by centrifugation and heavy-metal concentration measured by means of PIXE technique. A high variability of heavy-metal concentration was observed in pore waters of sampled sites, as a result of physico-chemical conditions in the water sediment column, with a different spatial distribution between two groups of metals (Fe, Mn and Crvs. Cu, Ni and Zn). Concentration gradients between pore and bottom waters were evaluated in order to investigate the metal enrichment as a function of their mobility in the sediment and diagenesis phenomena. Paper presented at the IX Congresso del Gruppo Nazionale per la Fisica dell'Atmosfera e dell'Oceano, June 8–10, 1992, Rome.  相似文献   

12.
This paper presents results of a study carried out in order to assess the applicability of 32Si for groundwater dating. Measurements of 32Si in soil samples of the unsaturated zone, of drainage waters and plant material give a basis for estimating the 32Si initial concentration in groundwater. Different aquifers with groundwater of young and moderate ages have been selected for groundwater studies. For obtaining independent age information tritium was found to be a suitable reference isotope. A quantitative interpretation of the 32Si data is generally complicated by geochemical processes, preferably in the unsaturated zone. Favourable conditions concerning the use of 32Si in hydrogeology seem to exist in phreatic sandy aquifers, in limestone aquifers, and, depending on the thickness and composition of the unsaturated zone, in sandstone aquifers. Further improvements of the 32Si method needs a better understanding of the geochemical processes affecting this isotope.  相似文献   

13.
14.
Grain segregation mechanism in aeolian sand ripples   总被引:2,自引:0,他引:2  
Many sedimentary rocks are formed by migration of sand ripples. Thin layers of coarse and fine sand are present in these rocks, and understanding how layers in sandstone are created has been a longstanding question. Here, we propose a mechanism for the origin of the most common layered sedimentary structures such as inverse graded climbing ripple lamination and cross-stratification patterns. The mechanism involves a competition between three segregation processes: (i) size-segregation and (ii) shape-segregation during transport and rolling, and (iii) size segregation due to different hopping lengths of the small and large grains. We develop a discrete model of grain dynamics which incorporates the coupling between moving grains and the static sand surface, as well as the different properties of grains, such as size and roughness, in order to test the plausibility of this physical mechanism. Received 19 July 1999 and Received in final form 4 August 1999  相似文献   

15.
Abstract

Measurements of deuterium content of the groundwater from neighbouring area of Danube Delta Biosphere Reserve show that the waters are meteoric in origin, but at the same time the results showed that the water for three sampling points could not originate from local groundwater and have their recharge area at high altitude and a considerable distance.

According to the δD values the following categories of waters were delineated:
  • (1) waters that belong to an confined aquifer in limestone and have their recharge in high altitude region, higher than 1000m (δD < -80‰)

    (2) waters tributary to the Danube river that have a small variability in time of δD values (δD > - 75‰)

    (3) local infiltration waters, situated in the West of the investigated area towards the continental platform of the Dobroudja, with high variability in time of δD values, due to seasonal effect (δD > - 70‰)

    (4) waters originated in mixing processes between the waters with different isotopic content. The one endmember is heavier isotopic water that belongs to local recharged waters (local infiltration waters and waters tributary to Danube river) and the other endmember is the isotopically light water.

  相似文献   

16.
Data from a 10-month monitoring study during 2007 in the Everglades ecosystem provide insight into the variation of δ18O, δD, and ion chemistry in surface water and shallow groundwater. Surface waters are sensitive to dilution from rainfall and input from external sources. Shallow groundwater, on the other hand, remains geochemically stable during the year. Surface water input from canals derived from draining agricultural areas to the north and east of the Everglades is evident in the ion data. δ18O and δD values in shallow groundwater remain near the mean of?2.4 and?12 ‰, respectively. 18O and D values are enriched in surface water compared with shallow groundwater and fluctuate in sync with those measured in rainfall. The local meteoric water line (LMWL) for precipitation is in close agreement with the global meteoric water line; however, the local evaporation line (LEL) for surface water and shallow groundwater is δ D=5.6 δ18O+1.5, a sign that these waters have experienced evaporation. The intercept of the LMWL and LEL indicates that the primary recharge to the Everglades is tropical cyclones or fronts. δ deuterium to δ18O excess (Dex values) generally reveal two moisture sources for precipitation, a maritime source during the fall and winter (D ex>10 ‰) and a continental-influenced source (D ex<10 ‰) in the spring and summer.  相似文献   

17.
Chronic kidney disease of unknown etiology (CKDu) is the main health issue in the dry zone of Sri Lanka. Despite many studies carried out, causative factors have not been identified yet clearly. According to the multidisciplinary researches carried out so far, potable water is considered as the main causative factor for CKDu. Hence, the present study was carried out with combined isotopic and chemical methods to understand possible relationships between groundwater; the main drinking water source, and CKDu in four endemic areas in the dry zone. Different water sources were evaluated isotopically (2H, 3H and 18O) and chemically from 2013 to 2015. Results revealed that prevalence of CKDu is significantly low with the groundwater replenished by surface water inputs. It is significantly high with the groundwater stagnated as well as groundwater recharged from regional flow paths. Thus, the origin, recharge mechanism and flow pattern of groundwater, as well as geological conditions which would be responsible for natural contamination of groundwater appear as the main causative factors for CKDu. Therefore, detailed investigations should be made in order to identify the element(s) in groundwater contributing to CKDu. The study recommends providing drinking water to the affected zones using water sources associated with surface waters.  相似文献   

18.
The potential of seismic exploration instruments for estimating the surface layers of soil in the towing zone of an extended multielement array is investigated. In contrast to the well-known method of common depth point, in which the main estimated parameters are the transit times of waves reflected from deep layers of the sea bottom, two-dimensional spectral analysis is used to measure the longitudinal wavenumbers of the modes forming an infrasonic field in the water layer. The measured longitudinal wavenumbers of modes serve initial data for estimating the acoustic characteristics of the upper layers of bottom sediments directly in the towing zone of pulse emitter and extended multielement array. It is concluded that the use of data on the parameters of upper soil layers in seismic exploration should increase the accuracy of contouring oil and gas condensate fields.  相似文献   

19.
This paper presents the stable isotope data of oxygen (δ18O) and hydrogen (δ2H) in groundwater from 83 sampling locations in Slovenia and their interpretation. The isotopic composition of water was monitored over 3 years (2009–2011), and each location was sampled twice. New findings on the isotopic composition of sampled groundwater are presented, and the data are also compared to past studies regarding the isotopic composition of precipitation, surface water, and groundwater in Slovenia. This study comprises: (1) the general characteristics of the isotopic composition of oxygen and hydrogen in groundwater in Slovenia, (2) the spatial distribution of oxygen isotope composition (δ18O) and d-excess in groundwater, (3) the groundwater isotope altitude effect, (4) the correlation between groundwater d-excess and the recharge area altitude of the sampling location, (5) the relation between hydrogen and oxygen isotopes in groundwater in comparison to the global precipitation isotope data, (6) the groundwater isotope effect of distance from the sea, and (7) the estimated relation between the mean temperature of recharge area and δ18O in groundwater.  相似文献   

20.
The thermo-mineral waters of the axial zone of the Eastern Pyrenees form a geochemically homogeneous group. They emerge in granite or orthogneiss and all have a sodium sulphide chemistry. Principal component analysis of their physico-chemical parameters has distinguished three types of fluid, 1) hot water that has evolved in a closed system and whose chemistry may reflect that of deep water, 2) water that is also of unmixed origin, but whose chemical composition has been modified during cooling by conduction, and 3) water cooled by mixing with surface water.

Stable isotope (18O, 2H) contents indicate that all the waters are of meteoric origin (from oceanic and/or Mediterranean precipitation). No heavy isotope enrichment has been found that would indicate evaporation or a geothermal effect between water and the host rock.

The differences in isotope contents between surface and thermo-mineral waters are attributed to a difference in recharge altitude; altitude gradients in 18O and 2H, estimated by two independent methods, are respectively 0.24‰ and 1.84° per 100m. They may, however, be lower when precipitation is in the form of snow. Applying these calculated gradients to thermo-mineral waters, taking mixing effects into account, has given an estimate of the minimum altitude of recharge of 110 springs in the Eastern Pyrenees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号