首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
吴琪琪  温一航 《结构化学》2020,39(2):294-300
The 2,2'-((sulfonylbis(4,1-phenylene))bis(oxy))diacetic acid(H2L) and 4,4'-bipyridine(4,4'-bipy) are employed as organic ligands to react with metal salts to obtain two new metal-organic frameworks(MOFs), namely [M2L2(4,4'-bipy)](M = Zn(1), Cu(2)). They have been successfully synthesized under hydrothermal conditions. Single-crystal X-ray diffraction reveals that two complexes are isostructural and crystallize in orthorhombic system with space group Pbcn. All L2- ligands bridge metal ions to form an infinite 1D Z-shaped chain along the a axis. Then through 4,4'-bipy, contiguous Z-shaped chains are linked to form a 2D layer structure. The luminescent studies of the H2L ligand and complex 1 in the solid state and thermogravimetric analyses(TGA) of two complexes are investigated.  相似文献   

2.
Zn(Ⅱ), Ni(Ⅱ) and Co(Ⅱ) compounds(1~3) based on 2-(2-pyridyl)benzothiazole(bpt) and terephthalic acid(PTA) were synthesized. The crystal structures of [Zn(bpt)(PTA)2](1), [Ni(bpt)(PTA)2](2), and [Co(bpt)(PTA)2](3) have been determined by single-crystal X-ray diffraction analysis, which shows that all the three complexes belong to monoclinic system with space group P21/c. Time-dependent density functional theory(TD-DFT) calculation is performed on a reference structure of compound 3. The excited electrons mainly localized at the π* of ligand 2-(2-pyridyl)benzothiazole, which will be convenient for them to bind with the DNA reacting sites. Fluorescence spectroscopy, ultraviolet(UV) spectroscopy and viscosity were used to characterize the interaction of the compounds with Calf thymus DNA(CT-DNA). The results indicate that compounds 1~3 bind to CT-DNA and have a strong interaction with DNA. The compounds can probably bind to CT-DNA via a non-intercalative mode as concluded by studying the viscosity of a DNA solution in the presence of the compounds. This combination can effectively break DNA, which speculates that these three compounds may interact with the cancer cell DNA in this binding mode, thereby damaging the cancer cells.  相似文献   

3.
Two new mixed-ligand ruthenium(Ⅱ) complexes,Ru(dcbpy)-(LL)NCS)2[where dcbpy=4,4‘-dicarboxyl-2,2‘‘-bipyridine,LL=4,4‘-bis(N-methyl-anilinomethyl)-2,2‘‘-bipyridine(2)],were synthesized,and the tphotophysical properties of these complexes were studied.The metal-to-ligand charge transfer (MLCT) transitions of these complexes exhibited solvatochromic effect due to the existence of NCS ligands.The MLCT energies also strongly depend on the pH values of the solutions because of protonation and deprotonation of the carboxyl groups.The pKa values of the ground state,4.0 for 1 and 3.8 for 2,were obtained from the titration curves.The photoelectrochemical properties of 1 and 2 as sensitizers in sandwich-type solar cells have been studied.Complex 1 exhibited better photoelectrochemical behavior than complex 2 as expected.It was proved that the design of mixed-ligand complex by introducing electron donating group in one of the ligands should be a promising approach.  相似文献   

4.
Cd(Ⅱ), Co(Ⅱ), Cu(Ⅱ) and Zn(Ⅱ) complexes(1~4) based on 2-(2-pyridyl)benzimidazole(pbm) and 4,4'-oxybisbenzoic acid(H2odc) were synthesized. The formulas of these complexes are [Cd(pbm)(odc)2](1), [Co(pbm)(odc)2](2), [Cu(pbm)(odc)2](3) and [Zn(pbm)(odc)2](4) confirmed by single-crystal X-ray diffraction analysis, which shows that complexes 1, 2 and 4 belong to monoclinic system with space group P21/n, while complex 3 belongs to monoclinic system with space group P21/c. The binding properties of complexes 1~4 with CT-DNA are evaluated by ultraviolet spectrum, fluorescence spectra and viscosity measurements. The results indicate that complexes 1~4 have strong interaction with CT-DNA binding. These complexes exhibit an electrostatic or groove mode in respect of binding with DNA, which can effectively destroy DNA. And this binding mode may be applied to the interaction between the complexes and cancer cell DNA. Therefore, we hope to provide a theoretical and scientific basis for the research of anti-cancer drugs.  相似文献   

5.
Four binuclear Co(Ⅱ), Ni(Ⅱ) and Cu(Ⅱ) complexes bridged by oxamidate (oxd) group have been synthesized, namely Co2(byp)2(oxd)(ClO4)2 (1), Co2(Me2bpy)2(oxd)(ClO4)2.H2O (2), Ni2(bpy)2(oxd)(ClO4)2.2H2O (3) and Cu2(Me2bpy)2(oxd)(NO3)2 (4). (bpy=2,2'-bipyridyl, Me2-bpy=4,4'-dimethylbipyridyl, oxd=oxamidate) The complexes are characterized by IR, UV spectra, EPR and variable-temperature magnetic susceptibility (4-300 K). The susceptibility data for. complexes 1 and 3 were least-squares fit to the susceptibility equation derived from the spin Hamiltonian H=-2J . S1 . S2. The exchange integral, J, was found to be equal to -3.62 cm-1 in 1 and -1.82 cm-1 in 3. This indicates a weak antiferromagnetic spin exchange interaction between the metal ions.  相似文献   

6.
Two novel complexes, namely {[Cd(AIP)(4,4?-bpy)]·1.3DMF}n(1) and [Cd(AIP)(2,2?- bpy)]n(2), have been synthesized through solvothermal reaction(H2AIP = 5-aminoisophthalic acid, 2,2?-bpy = 2,2?-bipyridine, 4,4?-bpy = 4,4?-bipyridine, and DMF = N,N?-dimethylformamide) and structurally determined by single-crystal X-ray diffraction. Complex 1 shows a three-dimensional(3D) layer-pillar framework with rectangular channels, while complex 2 displays a two-dimensional(2D) wave net architecture. Furthermore, 1 and 2 were characterized by elemental analysis, infrared spectra(IR), thermal gravimetric analyses(TGA) and fluorescence measurements. The luminescent properties of 1 dispersed in various organic solvents have been investigated systematically, demonstrating high selectivity for acetone via the fluorescence quenching effect.  相似文献   

7.
Three new transition metal complexes have been synthesized with a Schiff base,3-(2-hydroxy-5-chlorophenylimino)-l,3- diphenylpropen-1-one.In all complexes Schiff base is completely deprotonated and coordinated to metal as tridentate ligand via phenolic and enolic oxygens and imine nitrogen.Thermal decomposition of the complexes has been studied by thermogravimetry. The in vitro antibacterial activity of Schiff bases and their complexes has been evaluated and compared with the standard drugs.  相似文献   

8.
Polychelates of Mn(Ⅱ), Fe(Ⅱ), Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), Zn(Ⅱ) and Cd(Ⅱ) with the bis salen-type ligand derived from 4,4'-bis[(salicylaldehyde-5)azo]biphenyl and 1,4-diaminobutane have been synthesized. All the polychelalls have been characllrized by elemental analysis, magnetic susceptibility measurements, IR, electronic spectra and thennogravirncuic studies. All the complexes isolated in solid stall are dark coloured and insoluble in water and common organic solvents. The ligand behaves as a bis-bidentall molecule coordinating through the phenolic oxygen and azomethine nitrogen atoms. The thermal decomposition of these metal complexes was investigated by thermogravimetric analysis and data have been analyzed for kinetic parameters using Broido equation. The solid-state electrical conductivity of the ligand and its polychelalls in the form of compressed pellet was studied in the temperaturc range from 313 to 413 K All the polychelalls were found to show semiconducting nature. The Mn(Ⅱ), Fe(Ⅱ), Co(Ⅱ) and Ni(Ⅱ) polychelalls have been assessed for the catalytic epoxidation of styrene.  相似文献   

9.
Four new mixed-ligand complexes of pailadiumt(Ⅱ) with L1(N-benzoyl-α-amino acid dianion) and L2[ethyldiamine (en),2,2'-bipyridine (Bpy) and 1,10-phenanthroline (Phen)] were synthesized.Ail the complexes have been characterized by elemental analyses,molar conductance,infrared and 1H NMR spectra and therme-gravimetric analyses.Crystal structures of [Pd(Bpy)(Bzval-N,O)] and [Pd(en) (Bzphe-N,O)] H2O have been do termmed by X-ray diffraction analysis.The results indicate that in all the complexes hgand L1 coordinates to palladium (Ⅱ) through deprotonated amide nitrogen and carboxylic oxygen,and there are some intramolecular nonrovalent in teractions in the complexes.  相似文献   

10.
The forming of bleomycinA2-Cu(Ⅱ) cationic chelate and the interaction of the chelate with DNA have been investigated by using resonance Rayleigh scattering(RRS),molecular absorption and fluorescence spectra.The result shows that in aqueous solution,bleomycinA2(BLMA2) can react with Cu(Ⅱ) to form 1:1 cationic chelate which contributes to the changes of the absorption spectra and the quenched fluorescence of BLMA2.When the cationic chelate further bound with DNA to form ternary ion-association complexes,the r...  相似文献   

11.
Three new 2,2′-diamino-4,4′-bithiazole (DABTZ) lead(II) complexes were synthesized and characterized by elemental analyses, IR-, 1H-NMR-, and 13C-NMR-spectroscopy. The single crystal X-ray structural analysis of [Pb(DABTZ)(μ-SCN)(μ-NO3)] n shows the complex to be a 1D chain polymer as a result of sequential thiocyanate and nitrate bridging. The Pb atoms are seven-coordinated by two nitrogen atoms of the 2,2′-diamino-4,4′-bithiazole, three nitrate and two thiocyanate ligands. The arrangement of the 2,2′-diamino-4,4′-bithiazole, nitrate and thiocyanate ligands does not suggest a gap in the coordination around the PbII ion, caused by a stereo-active lone pair of electrons on lead(II) where the coordination around the lead atoms is the less common holodirected.  相似文献   

12.
The synthesis of a number of new 2,2′‐bipyridine ligands functionalized with bulky amino side groups is reported. Three homoleptic polypyridyl ruthenium (II) complexes, [Ru(L)3]2+ 2(PF6?), where L is 4,4′‐dioctylaminomethyl‐2,2′‐bipyridine (Ru4a), 4,4′‐didodecylaminomethyl‐2,2′‐bipyridine (Ru4b) and 4,4′‐dioctadodecylaminomethyl‐2,2′‐bipyridine (Ru4c), have been synthesized. These compounds were characterized and their photophysical properties examined. The electronic spectra of three complexes show pyridyl π → π* transitions in the UV region and metal‐to‐ligand charge transfer bands in the visible region. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
Heteroleptic Ru(II) complexes were designed based on 4,4′‐bis((E)‐styryl)‐2,2′‐bipyridine (bsbpy) as an ancillary ligand for dye‐sensitized solar cells (DSSCs), and those Ru(II) sensitizers, [Ru(L)(bsbpy)(NCS)2][TBA] (TBA; tetrabutylammonium), were synthesized according to a typical one‐pot reaction of [RuCl2(p‐cymene)]2 with the corresponding anchoring ligands (where L = 4,4′‐dicarboxy‐2,2′‐bipyridine (dcbpy), 4,4′‐bis((E)‐carboxyvinyl)‐2,2′‐bipyridine (dcvbpy), 4,7‐dicarboxy‐1,10‐phenanthroline (dcphen), or 4,7‐bis((E)‐carboxyvinyl)‐1,10‐phenanthroline (dcvphen)). The new Ru(II) dyes, [Ru(L)(bsbpy)(NCS)2][TBA] that incorporated vinyl spacer(s) into ancillary and/or anchoring ligand displayed red‐shifted bands over the overall UV/VIS region relative to the absorption spectra of N719 . A combination of bsbpy ancillary and dcphen anchoring ligand showed the best result for the overall power conversion efficiency (η); i.e., a DSSC fabricated with [Ru(dcphen)(bsbpy)(NCS)2][TBA] exhibited a power conversion efficiency (η) of 2.98% (compare to N719 , 4.82%).  相似文献   

14.
Several new copper(I) complexes of a group of bidentate bithiazole ligands have been isolated. The compounds prepared are bis(2,2′-dimethyl-4,4′-bithiazole)copper(I) perchlorate ([Cu(me-b)2]ClO4), bis(4,4′-dimethyl-2,2′-bithiazole)copper(I) perchlorate ([Cu(me-i)2]ClO4), bis(2,2′-diphenyl-4,4′-bithiazole) copper(I) perchlorate ([Cu(ph-b)2]ClO4), bis(4,4′-diphenyl-2,2′-bithiazole)copper(I) perchlorate ([Cu(ph-i)2]ClO4), bis(4,4′,5,5′-tetraphenyl-2,2′-bithiazole)-copper(I) perchlorate ([Cu(ph4-i)2]ClO4, bis(2,2′-bithiazole)copper(l) perchlorate ([Cu(i)2]CIO4), 2,2′-bithiazolecopper(I) perchlorate ([Cu(i)ClO4), (2,2′-bithiazole)bis(triphenylphosphinesulfide)copper(I) perchlorate ([Cu(i)(SPph3)2]ClO4,(2,2′-bithiazole)bis-( triphenylphosphine)copper(I) perchlorate ([Cu(i)(Pph3)2]ClO4), and (4,4′-bithiazole)bis(triphenylphosphine) copper(I) perchlorate ([Cu(b)(Pph3)2]ClO4). Several synthetic techniques were required including one developed in this work which involved the conversion of [Cu(Pph3)4]ClO4 into the thiophosphine complex by reaction with sulfur and subsequent use of this as a labile precursor complex. Optical spectra of the complexes indicate extensive solution dissociation. Several of the complexes ([Cu(ph-b)2]ClO4, [Cu(ph-i)2]CIO4, and [Cu(i)(Pph3]ClO4) were photoluminescent in the solid; one ([Cu(ph-b)2]ClO4) showed extensive loss of emission during irradiation. Most of the complexes prepared here appear to bind through the thiazole nitrogen atoms. However, infrared evidence suggests that in two of the complexes thiazole sulfur atoms participate in the bonding.  相似文献   

15.
Dichloro­(4,4′‐dipentyl‐2,2′‐bipyridine‐κ2N,N′)platinum(II), [PtCl2(C20H28N2)], adopts a discrete π–π stacking structure, where the alkyl chains are located in a random manner. In contrast, dichloro­(4,4′‐diheptyl‐2,2′‐bipyridine‐κ2N,N′)platinum(II), [PtCl2(C24H36N2)], forms a layer structure comprised of alkyl chain layers and paired coordination sites, as observed for analogous complexes with longer alkyl chains.  相似文献   

16.
4′‐Cyanophenyl‐2,2′:6′,2′′‐terpyridine (cptpy) was employed as an N,N′,N′′‐tridentate ligand to synthesize the compounds bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(II) bis(tetrafluoridoborate) nitromethane solvate, [CoII(C22H14N4)2](BF4)2·CH3NO2, (I), and bis[4′‐(4‐cyanophenyl)‐2,2′:6′,2′′‐terpyridine]cobalt(III) tris(tetrafluoridoborate) nitromethane sesquisolvate, [CoIII(C22H14N4)2](BF4)3·1.5CH3NO2, (II). In both complexes, the cobalt ions occupy a distorted octahedral geometry with two cptpy ligands in a meridional configuration. A greater distortion from octahedral geometry is observed in (I), which indicates a different steric consequence of the constrained ligand bite on the CoII and CoIII ions. The crystal structure of (I) features an interlocked sheet motif, which differs from the one‐dimensional chain packing style present in (II). The lower dimensionality in (II) can be explained by the disturbance caused by the larger number of anions and solvent molecules involved in the crystal structure of (II). All atoms in (I) are on general positions, and the F atoms of one BF4 anion are disordered. In (II), one B atom is on an inversion center, necessitating disorder of the four attached F atoms, another B atom is on a twofold axis with ordered F atoms, and the C and N atoms of one nitromethane solvent molecule are on a twofold axis, causing disorder of the methyl H atoms. This relatively uncommon study of analogous CoII and CoIII complexes provides a better understanding of the effects of different oxidation states on coordination geometry and crystal packing.  相似文献   

17.
The crystal and molecular structures of bis(η5‐2,4,7‐tri­methyl­indenyl)­cobalt(II), [Co(C12H13)2], (I), and rac‐2,2′,4,4′,7,7′‐hexamethyl‐1,1′‐biindene, C24H26, (II), are reported. In the crystal structure of (I), the Co atom lies on an inversion centre and the structure represents the first example of a bis(indenyl)cobalt complex exhibiting an eclipsed indenyl conformation. The (1R,1′R) and (1S,1′S) enantiomers of the three possible stereoisomers of (II), which form as by‐products in the synthesis of (I), cocrystallize in the monoclinic space group P21/c. In the unit cell of (II), alternating (1R,1′R) and (1S,1′S) enantiomers pack in non‐bonded rows along the a axis, with the planes of the indenyl groups parallel to each other and separated by 3.62 and 3.69 Å.  相似文献   

18.
π‐Conjugated organic materials exhibit high and tunable nonlinear optical (NLO) properties, and fast response times. 4′‐Phenyl‐2,2′:6′,2′′‐terpyridine (PTP) is an important N‐heterocyclic ligand involving π‐conjugated systems, however, studies concerning the third‐order NLO properties of terpyridine transition metal complexes are limited. The title binuclear terpyridine CoII complex, bis(μ‐4,4′‐oxydibenzoato)‐κ3O,O′:O′′;κ3O′′:O,O′‐bis[(4′‐phenyl‐2,2′:6′,2′′‐terpyridine‐κ3N,N′,N′′)cobalt(II)], [Co2(C14H8O5)2(C21H15N3)2], (1), has been synthesized under hydrothermal conditions. In the crystal structure, each CoII cation is surrounded by three N atoms of a PTP ligand and three O atoms, two from a bidentate and one from a symmetry‐related monodentate 4,4′‐oxydibenzoate (ODA2−) ligand, completing a distorted octahedral coordination geometry. Neighbouring [Co(PTP)]2+ units are bridged by ODA2− ligands to form a ring‐like structure. The third‐order nonlinear optical (NLO) properties of (1) and PTP were determined in thin films using the Z‐scan technique. The title compound shows a strong third‐order NLO saturable absorption (SA), while PTP exhibits a third‐order NLO reverse saturable absorption (RSA). The absorptive coefficient β of (1) is −37.3 × 10−7 m W−1, which is larger than that (8.96 × 10−7 m W−1) of PTP. The third‐order NLO susceptibility χ(3) values are calculated as 6.01 × 10−8 e.s.u. for (1) and 1.44 × 10−8 e.s.u. for PTP.  相似文献   

19.

Reaction of the ligand 2,2′-diphenyl-4,4′-bithiazole (DPBTZ) with Hg(SCN)2, Tl(NO3)3, CuCl, and PdCl2 gives complexes with stoichiometry [Hg(DPBTZ)(SCN)2], [Tl(DPBTZ)(NO3)3], [Cu(DPBTZ)(H2O)Cl], and [Pd(DPBTZ)Cl2]. The new complexes were characterized by elemental analyses and infrared spectroscopy. The crystal structure of [Hg(DPBTZ)(SCN)2] determined by X-ray crystallography. The Hg atom in the title monomeric complex, (2,2′-diphenyl-4,4′-bithiazole)mercury(II)bisthiocyanate, [Hg(C18H12N2S2)(SCN)2], is four-coordinate having an irregular tetrahedral geometry composed of two S atoms of thiocyanate ions [Hg-S 2.4025(15) and 2.4073(15) Å] and two N atoms of 2,2′-diphenyl-4,4′-bithiazole ligand [Hg-N 2.411(4) and 2.459(4) Å]. The bond angle S(3)-Hg(1)-S(4) of 147.46(5)° has the greatest derivation from ideal tetrahedral geometry. Intermolecular interaction between Hg(1) and two S atoms of two neighboring molecules, 3.9318(15) and 3.9640(18) Å, make the Hg(1) distort from a tetrahedron to a disordered octahedron. The attempts for preparation complexes of Tl(I), Pb(II), Bi(III), Cd(II) ions with 2,2′-diphenyl-4,4′-bithiazole ligand were not successful and also the attempts for preparation complexes of 4,4′,5,5′-tetraphenyl-2,2′-bithizole ligand with Cu(II), Ni(II), Co(II), Co(III), Mn(II), Mn(III), Fe(II), Fe(III), Cr(III), Zn(II), Tl(III), Pb(II), Hg(II), Cu(I), Pd(II) were not successful. This point can be regarded as the initial electron withdrawing of phenyl rings and also their spatial steric effects.  相似文献   

20.
[{CuCl(dm4bt)}2 μ-Cl)2] (1) (dm4bt = 2,2′-dimethyl-4,4′-bithiazole) was prepared from the reaction of CuCl2 · 2H2O with 2,2′-dimethyl-4,4′-bithiazole in methanol; [Cu(dm4bt)2NO3](NO3) (2) was prepared from the reaction of Cu(NO3)2 · 3H2O with 2,2′-dimethyl-4,4′-bithiazole in methanol. Both complexes were characterized by IR, UV–Vis spectroscopy, and single-crystal structure. The structure of 1 consists of centrosymmetric dimeric [{CuCl(dm4bt)}(μ-Cl)], in which two chloro ligands bridge the coppers forming a four-membered ring; a terminal chloride and a bidentate chelating bithiazole complete five coordination at each Cu(II) in a highly distorted trigonal-bipyramidal geometry. The mononuclear structure 2 consists of a Cu(II), two 2,2′-dimethyl-4,4′-bithiazoles, one monodentate nitrate and one uncoordinated nitrate in a highly distorted square pyramid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号