首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We consider a new Sobolev type function space called the space with multiweighted derivatives $ W_{p,\bar \alpha }^n $ W_{p,\bar \alpha }^n , where $ \bar \alpha $ \bar \alpha = (α 0, α 1,…, α n ), α i ∈ ℝ, i = 0, 1,…, n, and $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} $ \left\| f \right\|W_{p,\bar \alpha }^n = \left\| {D_{\bar \alpha }^n f} \right\|_p + \sum\limits_{i = 0}^{n - 1} {\left| {D_{\bar \alpha }^i f(1)} \right|} ,
$ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n $ D_{\bar \alpha }^0 f(t) = t^{\alpha _0 } f(t),D_{\bar \alpha }^i f(t) = t^{\alpha _i } \frac{d} {{dt}}D_{\bar \alpha }^{i - 1} f(t),i = 1,2,...,n   相似文献   

2.
Suppose that X is a complex Banach space with the norm ‖·‖ and n is a positive integer with dim Xn ⩾ 2. In this paper, we consider the generalized Roper-Suffridge extension operator $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f) on the domain $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } $ \Omega _{p_1 ,p_2 , \ldots ,p_{n + 1} } defined by
$ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = {*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ $ \Phi _{n,\beta _2 ,\gamma _2 , \ldots ,\beta _{n + 1} ,\gamma _{n + 1} } (f)(x) = \begin{array}{*{20}c} {\sum\limits_{j = 1}^n {\left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)} ^{\beta _j } (f'(x_1^* (x)))^{\gamma _j } x_1^* (x)x_j } \\ { + \left( {\frac{{f(x_1^* (x))}} {{x_1^* (x)}}} \right)^{\beta _{n + 1} } (f'(x_1^* (x)))^{\gamma _{n + 1} } \left( {x - \sum\limits_{j = 1}^n {x_1^* (x)x_j } } \right)} \\ \end{array}   相似文献   

3.
Imaginary powers associated to the Laguerre differential operator $ L_\alpha = - \Delta + |x|^2 + \sum _{i = 1}^d \frac{1} {{x_i^2 }}(\alpha _i^2 - 1/4) $ L_\alpha = - \Delta + |x|^2 + \sum _{i = 1}^d \frac{1} {{x_i^2 }}(\alpha _i^2 - 1/4) are investigated. It is proved that for every multi-index α = (α1,...α d ) such that α i ≧ −1/2, α i ∉ (−1/2, 1/2), the imaginary powers $ \mathcal{L}_\alpha ^{ - i\gamma } ,\gamma \in \mathbb{R} $ \mathcal{L}_\alpha ^{ - i\gamma } ,\gamma \in \mathbb{R} , of a self-adjoint extension of L α, are Calderón-Zygmund operators. Consequently, mapping properties of $ \mathcal{L}_\alpha ^{ - i\gamma } $ \mathcal{L}_\alpha ^{ - i\gamma } follow by the general theory.  相似文献   

4.
Considering the positive d-dimensional lattice point Z + d (d ≥ 2) with partial ordering ≤, let {X k: kZ + d } be i.i.d. random variables taking values in a real separable Hilbert space (H, ‖ · ‖) with mean zero and covariance operator Σ, and set $ S_n = \sum\limits_{k \leqslant n} {X_k } $ S_n = \sum\limits_{k \leqslant n} {X_k } , nZ + d . Let σ i 2, i ≥ 1, be the eigenvalues of Σ arranged in the non-increasing order and taking into account the multiplicities. Let l be the dimension of the corresponding eigenspace, and denote the largest eigenvalue of Σ by σ 2. Let logx = ln(xe), x ≥ 0. This paper studies the convergence rates for $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) $ \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}} P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt {2\left| n \right|\log \log \left| n \right|} } \right) . We show that when l ≥ 2 and b > −l/2, E[‖X2(log ‖X‖) d−2(log log ‖X‖) b+4] < ∞ implies $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} $ \begin{gathered} \mathop {\lim }\limits_{\varepsilon \searrow \sqrt {d - 1} } (\varepsilon ^2 - d + 1)^{b + l/2} \sum\limits_n {\frac{{\left( {\log \log \left| n \right|} \right)^b }} {{\left| n \right|\log \left| n \right|}}P\left( {\left\| {S_n } \right\| \geqslant \sigma \varepsilon \sqrt 2 \left| n \right|\log \log \left| n \right|} \right)} \hfill \\ = \frac{{K(\Sigma )(d - 1)^{\frac{{l - 2}} {2}} \Gamma (b + l/2)}} {{\Gamma (l/2)(d - 1)!}} \hfill \\ \end{gathered} , where Γ(·) is the Gamma function and $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } $ \prod\limits_{i = l + 1}^\infty {((\sigma ^2 - \sigma _i^2 )/\sigma ^2 )^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } .  相似文献   

5.
Let R be a prime ring and δ a derivation of R. Divided powers $ D_n ^{\underline{\underline {def.}} } \tfrac{1} {{n!}}\tfrac{{d^n }} {{dx^n }} $ D_n ^{\underline{\underline {def.}} } \tfrac{1} {{n!}}\tfrac{{d^n }} {{dx^n }} of ordinary differentiation d/dx form Hasse-Schmidt higher derivations of the Ore extension (skew polynomial ring) R[x; δ]. They have been used crucially but implicitly in the investigation of R[x; δ]. Our aim is to explore this notion. The following is proved among others: Let Q be the left Martindale quotient ring of R. It is shown that $ S^{\underline{\underline {def.}} } Q[x;\delta ] $ S^{\underline{\underline {def.}} } Q[x;\delta ] is a quasi-injective (R, R)-module and that any (R,R)-bimodule endomorphism of S can be uniquely expressed in the form
$ \theta (f) = \sum\limits_{n = 0}^\infty {\zeta _n D_n (f)} forf \in Q[x;\delta ], $ \theta (f) = \sum\limits_{n = 0}^\infty {\zeta _n D_n (f)} forf \in Q[x;\delta ],   相似文献   

6.
Let p be a prime, χ denote the Dirichlet character modulo p, f (x) = a 0 + a 1 x + ... + a k x k is a k-degree polynomial with integral coefficients such that (p, a 0, a 1, ..., a k ) = 1, for any integer m, we study the asymptotic property of
$ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } , $ \sum\limits_{\chi \ne \chi _0 } {\left| {\sum\limits_{a = 1}^{p - 1} {\chi (a)e\left( {\frac{{f(a)}} {p}} \right)} } \right|^2 \left| {L(1,\chi )} \right|^{2m} } ,   相似文献   

7.
Huffman, Park and Skoug established several results involving Fourier-Feynman transform and convolution for functionals in a Banach algebra S on the classical Wiener space. Chang, Kim and Yoo extended these results to abstract Wiener space for a more generalized Fresnel class $ \mathcal{F}_{\mathcal{A}_1 ,\mathcal{A}_2 } $ \mathcal{F}_{\mathcal{A}_1 ,\mathcal{A}_2 } A1,A2 than the Fresnel class $ \mathcal{F} $ \mathcal{F} (B)which corresponds to the Banach algebra S. In this paper we study Fourier-Feynman transform, convolution and first variation of unbounded functionals on abstract Wiener space having the form
$ F\left( x \right) = G\left( x \right)\psi \left( {\left( {\vec e,x} \right)^ \sim } \right) $ F\left( x \right) = G\left( x \right)\psi \left( {\left( {\vec e,x} \right)^ \sim } \right)   相似文献   

8.
We study some properties of a $ \mathfrak{c} $ \mathfrak{c} -universal semilattice $ \mathfrak{A} $ \mathfrak{A} with the cardinality of the continuum, i.e., of an upper semilattice of m-degrees. In particular, it is shown that the quotient semilattice of such a semilattice modulo any countable ideal will be also $ \mathfrak{c} $ \mathfrak{c} -universal. In addition, there exists an isomorphism $ \mathfrak{A} $ \mathfrak{A} such that $ {\mathfrak{A} \mathord{\left/ {\vphantom {\mathfrak{A} {\iota \left( \mathfrak{A} \right)}}} \right. \kern-\nulldelimiterspace} {\iota \left( \mathfrak{A} \right)}} $ {\mathfrak{A} \mathord{\left/ {\vphantom {\mathfrak{A} {\iota \left( \mathfrak{A} \right)}}} \right. \kern-\nulldelimiterspace} {\iota \left( \mathfrak{A} \right)}} will be also $ \mathfrak{c} $ \mathfrak{c} -universal. Furthermore, a property of the group of its automorphisms is obtained. To study properties of this semilattice, the technique and methods of admissible sets are used. More exactly, it is shown that the semilattice of mΣ-degrees $ L_{m\Sigma }^{\mathbb{H}\mathbb{F}\left( S \right)} $ L_{m\Sigma }^{\mathbb{H}\mathbb{F}\left( S \right)} on the hereditarily finite superstructure $ \mathbb{H}\mathbb{F} $ \mathbb{H}\mathbb{F} (S) over a countable set S will be a $ \mathfrak{c} $ \mathfrak{c} -universal semilattice with the cardinality of the continuum.  相似文献   

9.
We develop a Wold decomposition for the shift semigroup on the Hardy space $ \mathcal{H}^2 $ \mathcal{H}^2 of square summable Dirichlet series convergent in the half-plane $ \Re (s) > 1/2 $ \Re (s) > 1/2 . As an application we have that a shift invariant subspace of $ \mathcal{H}^2 $ \mathcal{H}^2 is unitarily equivalent to $ \mathcal{H}^2 $ \mathcal{H}^2 if and only if it has the form $ \phi \mathcal{H}^2 $ \phi \mathcal{H}^2 for some $ \mathcal{H}^2 $ \mathcal{H}^2 -inner function φ.  相似文献   

10.
Let f(n) be a strongly additive complex-valued arithmetic function. Under mild conditions on f, we prove the following weighted strong law of large numbers: if X,X 1,X 2, … is any sequence of integrable i.i.d. random variables, then
$ \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\nolimits_{n = 1}^N {f(n)X_n } }} {{\sum\nolimits_{n = 1}^N {f(n)} }} = \mathbb{E}Xa.s. $ \mathop {\lim }\limits_{N \to \infty } \frac{{\sum\nolimits_{n = 1}^N {f(n)X_n } }} {{\sum\nolimits_{n = 1}^N {f(n)} }} = \mathbb{E}Xa.s.   相似文献   

11.
Zeta-generalized-Euler-constant functions,
$ \gamma \left( s \right): = \sum\limits_{k = 1}^\infty {\left( {\frac{1} {{k^s }} - \int_k^{k + 1} {\frac{{dx}} {{x^s }}} } \right)} $ \gamma \left( s \right): = \sum\limits_{k = 1}^\infty {\left( {\frac{1} {{k^s }} - \int_k^{k + 1} {\frac{{dx}} {{x^s }}} } \right)}   相似文献   

12.
Laguerre calculus is a powerful tool for harmonic analysis on the Heisenberg group. Many sub-elliptic partial differential operators can be inverted by Laguerre calculus. In this article, we use Laguerre calculus to find explicit kernels of the fundamental solution for the Paneitz operator and its heat equation. The Paneitz operator which plays an important role in CR geometry can be written as follows:
$ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2 $ {\mathcal{P}_\alpha} = {\mathcal{L}_\alpha} \bar {\mathcal{L}_\alpha} = \frac{1} {4}\left[ {\sum\limits_{j = 1}^n {\left( {Z_j \bar Z_j + \bar Z_j Z_j } \right)} } \right]^2 + \alpha ^2 T^2   相似文献   

13.
Let X,X(1),X(2),... be independent identically distributed random variables with mean zero and a finite variance. Put S(n) = X(1) + ... + X(n), n = 1, 2,..., and define the Markov stopping time η y = inf {n ≥ 1: S(n) ≥ y} of the first crossing a level y ≥ 0 by the random walk S(n), n = 1, 2,.... In the case $ \mathbb{E} $ \mathbb{E} |X|3 < ∞, the following relation was obtained in [8]: $ \mathbb{P}\left( {\eta _0 = n} \right) = \frac{1} {{n\sqrt n }}\left( {R + \nu _n + o\left( 1 \right)} \right) $ \mathbb{P}\left( {\eta _0 = n} \right) = \frac{1} {{n\sqrt n }}\left( {R + \nu _n + o\left( 1 \right)} \right) as n → ∞, where the constant R and the bounded sequence ν n were calculated in an explicit form. Moreover, there were obtained necessary and sufficient conditions for the limit existence $ H\left( y \right): = \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) $ H\left( y \right): = \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) for every fixed y ≥ 0, and there was found a representation for H(y). The present paper was motivated by the following reason. In [8], the authors unfortunately did not cite papers [1, 5] where the above-mentioned relations were obtained under weaker restrictions. Namely, it was proved in [5] the existence of the limit $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _y = n} \right) for every fixed y ≥ 0 under the condition $ \mathbb{E} $ \mathbb{E} X 2 < ∞ only; In [1], an explicit form of the limit $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _0 = n} \right) $ \mathop {\lim }\limits_{n \to \infty } n^{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}} \mathbb{P}\left( {\eta _0 = n} \right) was found under the same condition $ \mathbb{E} $ \mathbb{E} X 2 < ∞ in the case when the summand X has an arithmetic distribution. In the present paper, we prove that the main assertion in [5] fails and we correct the original proof. It worth noting that this corrected version was formulated in [8] as a conjecture.  相似文献   

14.
Let λ be a real number such that 0 < λ < 1. We establish asymptotic formulas for the weighted real moments Σ nx R λ (n)(1 − n/x), where R(n) =$ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu - 1} } $ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu - 1} } is the Atanassov strong restrictive factor function and n =$ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu } } $ \prod\nolimits_{\nu = 1}^k {p_\nu ^{\alpha _\nu } } is the prime factorization of n.  相似文献   

15.
Given a set X, $\mathsf {AC}^{\mathrm{fin}(X)}$ denotes the statement: “$[X]^{<\omega }\backslash \lbrace \varnothing \rbrace$ has a choice set” and $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )$ denotes the family of all closed subsets of the topological space $\mathbf {2}^{X}$ whose definition depends on a finite subset of X. We study the interrelations between the statements $\mathsf {AC}^{\mathrm{fin}(X)},$ $\mathsf {AC}^{\mathrm{fin}([X]^{<\omega })},$ $\mathsf {AC}^{\mathrm{fin} (F_{n}(X,2))},$ $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$ and “$\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set”. We show:
  • (i) $\mathsf {AC}^{\mathrm{fin}(X)}$ iff $\mathsf {AC}^{\mathrm{fin}([X]^{<\omega } )}$ iff $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set iff $\mathsf {AC}^{\mathrm{fin}(F_{n}(X,2))}$.
  • (ii) $\mathsf {AC}_{\mathrm{fin}}$ ($\mathsf {AC}$ restricted to families of finite sets) iff for every set X, $\mathcal {C}_\mathrm{R}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set.
  • (iii) $\mathsf {AC}_{\mathrm{fin}}$ does not imply “$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$ has a choice set($\mathcal {K}(\mathbf {X})$ is the family of all closed subsets of the space $\mathbf {X}$)
  • (iv) $\mathcal {K}(\mathbf {2}^{X})\backslash \lbrace \varnothing \rbrace$ implies $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$ but $\mathsf {AC}^{\mathrm{fin}(X)}$ does not imply $\mathsf {AC}^{\mathrm{fin}(\mathcal {\wp }(X))}$.
We also show that “For every setX, “$\mathcal {K}\big (\mathbf {2}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set” iff “for every setX, $\mathcal {K}\big (\mathbf {[0,1]}^{X}\big )\backslash \lbrace \varnothing \rbrace$has a choice set” iff “for every product$\mathbf {X}$of finite discrete spaces,$\mathcal {K}(\mathbf {X})\backslash \lbrace \varnothing \rbrace$ has a choice set”.  相似文献   

16.
Let Θ be a bounded open set in ℝ n , n ⩾ 2. In a well-known paper Indiana Univ. Math. J., 20, 1077–1092 (1971) Moser found the smallest value of K such that
$ \sup \left\{ {\int_\Omega {\exp \left( {\left( {\frac{{\left| {f(x)} \right|}} {K}} \right)^{{n \mathord{\left/ {\vphantom {n {(n - 1)}}} \right. \kern-\nulldelimiterspace} {(n - 1)}}} } \right):f \in W_0^{1,n} (\Omega ),\left\| {\nabla f} \right\|_{L^n } \leqslant 1} } \right\} < \infty $ \sup \left\{ {\int_\Omega {\exp \left( {\left( {\frac{{\left| {f(x)} \right|}} {K}} \right)^{{n \mathord{\left/ {\vphantom {n {(n - 1)}}} \right. \kern-\nulldelimiterspace} {(n - 1)}}} } \right):f \in W_0^{1,n} (\Omega ),\left\| {\nabla f} \right\|_{L^n } \leqslant 1} } \right\} < \infty   相似文献   

17.
We consider semilinear partial differential equations in ℝ n of the form
$ \sum\limits_{\frac{{|\alpha |}} {m} + \frac{{|\beta |}} {k} \leqslant 1} {c_{\alpha \beta } x^\beta D_x^\alpha u = F(u)} , $ \sum\limits_{\frac{{|\alpha |}} {m} + \frac{{|\beta |}} {k} \leqslant 1} {c_{\alpha \beta } x^\beta D_x^\alpha u = F(u)} ,   相似文献   

18.
Let $ \mathbb{B} $ \mathbb{B} be the unit ball in ℂ n and let H($ \mathbb{B} $ \mathbb{B} ) be the space of all holomorphic functions on $ \mathbb{B} $ \mathbb{B} . We introduce the following integral-type operator on H($ \mathbb{B} $ \mathbb{B} ):
$ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B}, $ I_\phi ^g (f)(z) = \int\limits_0^1 {\operatorname{Re} f(\phi (tz))g(tz)\frac{{dt}} {t}} ,z \in \mathbb{B},   相似文献   

19.
Let n ≥ 2 be an integer. In this paper, we investigate the generalized Hyers-Ulam stability problem for the following functional equation f(n-1∑j=1 xj+2xn)+f(n-1∑j=1 xj-2xn)+8 n-1∑j=1f(xj)=2f(n-1∑j=1 xj) +4 n-1∑j=1[f(xj+xn)+f(xj-xn)] which contains as solutions cubic, quadratic or additive mappings.  相似文献   

20.
Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum
$ \sum\limits_{X \leqslant n \leqslant 2X} {\lambda (n)e^{2\pi i\alpha \sqrt n } } ,0 \ne \alpha \in \mathbb{R} $ \sum\limits_{X \leqslant n \leqslant 2X} {\lambda (n)e^{2\pi i\alpha \sqrt n } } ,0 \ne \alpha \in \mathbb{R}   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号