首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Chemometric experimental design in microextraction plays a crucial role in sustaining the highest quality of analytical data. Making use of the main significant points of chemometric experimental design and microextraction in analytical chemistry we formed the core of this review article. A step-by-step chemometric approach is provided to optimize and validate microextraction-based analytical processes. Significant applications are reported with developments related to microextraction combined with chemometric optimization processes. As it appears from the numerous examples provided in this review, a great number of researchers give credit to the combination of microextraction and chemometrics recognizing that it significantly streamlines sample processing. Moreover, the combination of microextraction with chemometrics addresses problems relating to improvement in detectability and method validation. A worked example on the microextraction of polychlorinated biphenyls is incorporated into the relevant sections of this article and comprehensively provides in a rational and integrated way guidance to people dealing with this subject.  相似文献   

2.
Standard approaches to development of liquid chromatography-mass spectrometry (LC-MS) methods, either ion-pairing or reversed-phase liquid chromatography, have been through trial and error or intentional variation of experimental factors. These approaches to method optimization fail to take into account interactions between experimental factors and therefore the results may not be optimal for the combination of experimental factors. Another approach to optimization is through the use of chemometrics. Chemometric approaches can be more efficient than trial and error or intentional variation because chemometrics make use of multivariate designs; experimental factors are varied simultaneously at the various levels. Therefore chemometrics can take into account interactions between factors. The goal of this study was to develop a generic ion-pair LC-MS method for the analysis of acidic compounds using a chemometric approach called design of experiments (DOE). Four acidic compounds which cover three classes of acidic functional groups: 1-naphthyl phosphate (1), 1-naphthalenesulfonic acid (2), 2-naphthalenesulfonic acid (3), and (1-naphthoxy)acetic acid (4) were used as model compounds to develop the generic method. This study illustrates that LC-MS conditions can be optimized efficiently with minimal amount of experimentation using a chemometric approach to experimental design.  相似文献   

3.
Chemometrics is the application of statistical and mathematical methods to analytical data to permit maximum collection and extraction of useful information. The utility of chemometric techniques as tools enabling multidimensional calibration of selected spectroscopic, electrochemical, and chromatographic methods is demonstrated. Application of this approach mainly for interpretation of UV-Vis and near-IR (NIR) spectra, as well as for data obtained by other instrumental methods, makes identification and quantitative analysis of active substances in complex mixtures possible, especially in the analysis of pharmaceutical preparations present in the market. Such analytical work is carried out by the use of advanced chemical instruments and data processing, which has led to a need for advanced methods to design experiments, calibrate instruments, and analyze the resulting data. The purpose of this review is to describe various chemometric methods in combination with UV-Vis spectrophotometry, NIR spectroscopy, fluorescence spectroscopy, electroanalysis, chromatographic separation, and flow-injection analysis for the analysis of drugs in pharmaceutical preparations. Theoretical and practical aspects are described with pharmaceutical examples of chemometric applications. This review will concentrate on gaining an understanding of how chemometrics can be useful in the modern analytical laboratory. A selection of the most challenging problems faced in pharmaceutical analysis is presented, the potential for chemometrics is considered, and some consequent implications for utilization are discussed. The reader can refer to the citations wherever appropriate.  相似文献   

4.
"Real-time" chemometrics as envisioned by the union of instrument control, data acquisition, and chemometric analysis with a single software platform can provide substantial benefits to manufacturing concerns that require process control. Some of these benefits include faster generation of information and improved quality control. This paper describes a series of chemometric routines written in LabVIEW and demonstrates their use in predicting six properties of diesel fuel. In particular, near-infrared spectral data were used to predict the boiling point at 50% recovery, cetane number, density, freezing temperature, total aromatics, and viscosity for a series of diesel fuels.  相似文献   

5.
分析化学计量学   总被引:3,自引:0,他引:3  
本文是《分析试验室》第五篇“分析化学计量学”专题定期评述文章。评述了1997年1月至1998年12月我国分析化学计量学的主要进展。内容涉及统计学与统计方法、试验设计与优化、分析信号处理、多元校正、化学模式识别、定量构效关系(QSAR)、数据库及专家系统、化学计量学教学等方面,共引用文献168篇。  相似文献   

6.
The objective of this paper is to illustrate how chemometrics can enhance the scope and power of flow injection analysis (FIA) by considering a few simple but representative cases where the ability of chemometrics to improve performance is not readily apparent. In principle, there are two phases when chemometrics can be usefully combined with FIA: first when developing an FIA method and, second, when treating raw data acquired from an FIA detection system. The most obvious application of chemometrics for the FIA practitioner is to use experimental design to replace the obsolete, but too often used one-variable-at-a-time approach when optimising an FIA method. Therefore, methods for screening variables and system optimisation are discussed. Raw data acquired from most FIA systems are first-order data, containing information about the dispersed sample plug. However, the information that is extracted when using FIA for routine purposes is of zero-order: predominantly peak height values. It is shown by a simple example that a chemometric approach in such cases can again provide additional useful information about the sample. First-order spectral data and second-order data more or less require a chemometrics approach for successful analysis, and examples of such applications are briefly discussed.  相似文献   

7.
《Analytical letters》2012,45(8):933-948
This overview summarizes the application and impact of chemometrics on the extraction and interpretation of analytical data with the use of curve resolution methods from about 2005 onward. The development and usage of well-known and novel chemometric methods have been described and approximately 85 papers have been referenced. Many suggested improvements to some well-known methods, for example, multivariate curve resolution, have been noted as well as the growing software for such methods. Also, these high dimensional resolution methods have found significant application and, arguably, have opened up a new perspective in calibration, that is, extraction of otherwise unobtainable analytical information from strongly overlapping profiles in the presence of interferences. Recent literature suggests that the use of chemometric methods in analytical chemistry for data extraction and interpretation provides indispensable tools for multivariate data processing and extraction of hidden information, which otherwise would be difficult to obtain.  相似文献   

8.
现代分析化学与化学计量学   总被引:4,自引:0,他引:4  
崔卉  梁逸曾 《分析化学》1996,24(8):974-980
  相似文献   

9.
The aim of this work was to implement a chemometric analysis to detect the relationships between the analysed variables in samples of solid fuels. Efforts are being made to apply chemometrics methods in environmental issues by developing methods for the rapid assessment of solid fuels and their compliance with the required emission characteristics regulations. In the present investigation, two clustering techniques—hierarchical clustering analysis (HCA) and principal components analysis (PCA)—are used to obtain the linkage between solid fuel properties and the type of sample. These analyses allowed us to detect the relationships between the studied parameters of the investigated solid fuels. Furthermore, the usefulness of chemometrics methods for identification of the origin of biofuels is shown. These methods will enable control of the degree of contamination.   相似文献   

10.
Rasmus Bro   《Analytica chimica acta》2003,500(1-2):185-194
Chemometrics has been used for some 30 years but there is still need for disseminating the potential benefits to a wider audience. In this paper, we claim that proper analytical chemistry (1) must in fact incorporate a chemometric approach and (2) that there are several significant advantages of doing so. In order to explain this, an indirect route will be taken, where the most important benefits of chemometric methods are discussed using small illustrative examples. Emphasis will be on multivariate data analysis (for example calibration), whereas other parts of chemometrics such as experimental design will not be treated here. Four distinct aspects are treated in detail: noise reduction; handling of interferents; the exploratory aspect and the possible outlier control. Additionally, some new developments in chemometrics are described.  相似文献   

11.
肖敏  树松 《合成化学》1997,5(3):256-260
报道了将化学计量学用于有机合成分析,研究了从有机合成实验设计,条件优化,反应建模及机理剖析等问题。以呋喷 催化加氢合成四氢呋喃为例说明了方法的可行性性和的有效性。  相似文献   

12.
13.
Comprehensive two-dimensional (2D) separations provide the analyst with a tremendous amount of complex data. In order to glean useful information from this complex data, advancements in commercially available software that implement chemometrics are currently available and continue to evolve. Future advancements will no doubt involve commercializing (or adapting) specialized, in-house chemometric techniques that are currently found only in the hands of technical experts and researchers in industry, government, and academia. In order to make timely advancements, future commercialization of novel chemometric techniques should involve collaborations among instrument software manufacturers, professional programmers, technical experts, and researchers. During the last decade, this field has seen a steady advancement from single analyte target analysis to comprehensive non-target analysis of entire multidimensional sample profiles (involving sample classification and/or data mining for discovery-based sample comparisons). The advancements in instrumentation and chemometric software tools have a tremendous impact in various applications: fuels, food, environmental, pharmaceuticals, metabolomics, etc. Most of the development has been for software to apply with gas chromatography-based instrumentation, such as comprehensive two-dimensional gas chromatography (GC x GC) and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC x GC-TOF-MS). More recently there have been notable advancements in liquid-phase instrumentation as well.  相似文献   

14.
This study briefly outlines the idea of principal component analysis and cross-correlation calculations (applied chemometrics) and presents an illustrative example from wood-processing chemistry. The applicability of chemometric data analysis was demonstrated by investigating the various structural changes that take place in dissolved and degraded lignin ("kraft lignin") during laboratory-scale kraft pulping of Scots pine (Pinus sylvestris) and silver birch (Betula pendula). The structural data (31P NMR and size exclusion chromatographic data) on kraft lignin were further processed by chemometric multivariate techniques (PCA and 2DCC), confirming, for example, that the cleavage of beta-aryl ether structures, the most prominent linkages between monomeric units, is directly related to the decrease in the average molecular mass of lignin.  相似文献   

15.
运用色谱指纹图谱与化学计量学方法对灵芝进行分类   总被引:2,自引:0,他引:2  
张景丽  罗霞  郑林用  许小燕  叶利明 《色谱》2009,27(6):776-780
采用95%乙醇为提取溶剂,运用高效液相色谱(HPLC)指纹图谱技术与化学计量学方法,对11个不同灵芝菌株子实体进行分类。通过相似度分析分别获得提取样品指纹图谱的13个共有峰及每个样品之间的相似度;以相对共有峰面积为分析参数,运用化学计量学方法包括聚类分析(HCA)、主成分分析(PCA)及判别分析(DA)对其进行分类,结果分为紫芝、赤芝和美国大灵芝3类。实验结果表明,用化学计量学的方法对灵芝样品的指纹图谱数据进行分析,是一种可用于其分类的科学方法。  相似文献   

16.
化学计量学在电分析化学中的应用   总被引:8,自引:2,他引:8  
倪永年  白洁玲 《分析化学》1996,24(5):606-612
本文对化学计量学各种方法,诸如多元校正,因子分析,信号处理,参数估计,模式识别等电分析化学中的应用作了回顾及评述,指出了化学计量学电分析化学中应用的良好前景。  相似文献   

17.
化学计量学在有机物电分析化学中的应用   总被引:1,自引:0,他引:1  
化学计量学在有机物电分析化学中的应用日益广泛,并发挥重要的作用。本文就化学计量学方法在色素、抗氧化剂、维生素、氨基酸、环境污染物、农药及药物等电分析化学方面的应用作一综述。引用参考文献58篇。  相似文献   

18.
The qualitative and quantitative determination of the chemical constitutes in traditional Chinese medicine (TCM) is an important task, which builds the foundation of the theory of pharmacological activity. The hyphenated chromatography instruments combined with the related chemometric methods provide powerful tools for the resolution of such complex systems. The familiar chemometrics methods can be roughly divided into two different kinds, the iterative one such as orthogonal projection approach (OPA) and non-iterative one representing by evolving window orthogonal projection (EWOP). One can use different kinds of methods according to overlapping condition, and then the measured data matrix can be resolved into pure concentration profiles and mass spectra of the chemical components with relative high efficiency and acceptable accuracy. One kind of TCM, named Notoptergium incium (NI) was analyzed by gas chromatography-mass spectrometry (GC-MS) and resolved by above chemometric approach. Experiment results show the efficiency and convenience of the proposed approach. 65 of the 98 separated constituents in essential oil, accounting for 92.13%, were identified by mass spectroscopy (MS).  相似文献   

19.
Fourier transform infrared spectroscopy coupled with chemometrics was employed to detect packaging polylactic acid-based biocomposite samples adulterated with polypropylene (PP) 30–45% and linear low-density polyethylene 2–10%. Principal component analysis, soft independent modeling of class analogy (SIMCA) and partial least square discriminate analysis (PLS-DA) chemometric techniques were utilized to classify samples in different classes. Totally, 362 samples were modeled in three different classes (two adulterated and one non-adulterated). The obtained results revealed that PLS-DA is the most suitable chemometric approach for prediction of probable adulteration in biocomposite samples with reliable specificity and selectivity. It could provide 99% correct class prediction rate between non-adulterated biocomposite samples and adulterated ones, while SIMCA methods provided 73.33% prediction accuracy in classification.  相似文献   

20.
The proliferation of increasingly more sophisticated analytical separation systems, often incorporating increasingly more powerful detection techniques, such as high‐resolution mass spectrometry, causes an urgent need for highly efficient data‐analysis and optimization strategies. This is especially true for comprehensive two‐dimensional chromatography applied to the separation of very complex samples. In this contribution, the requirement for chemometric tools is explained and the latest developments in approaches for (pre‐)processing and analyzing data arising from one‐ and two‐dimensional chromatography systems are reviewed. The final part of this review focuses on the application of chemometrics for method development and optimization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号