首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
《Solid State Sciences》2012,14(3):330-334
The frequency dependence of electric modulus of polycrystalline CaCu3Ti4O12 (CCTO) ceramics has been investigated. The experimental data have also been analyzed in the complex plane of impedance and electric modulus, and a suitable equivalent circuit has been proposed to explain the dielectric response. Four dielectric responses are first distinguished in the impedance and modulus spectroscopies. The results are well interpreted in terms of a triple insulating barrier capacitor model. Using this model, these four dielectric relaxations are attributed to the domain, domain-boundary, grain-boundary, and surface layer effects with three Maxwell–Wagner relaxations. Moreover, the values of the resistance and capacitance of bulk CCTO phase, domain-boundary, grain-boundary and surface layer contributions have been calculated directly from the peak characteristics of spectroscopic plots.  相似文献   

2.
《Solid State Sciences》2012,14(2):225-228
The perovskite PrFeO3 ceramics were synthesized via sol–gel method. The dielectric properties and impedance spectroscopy (IS) of these ceramics were studied in the frequency range from 100 Hz to 1000 kHz in the temperature range from 80 K to 300 K. These materials exhibited colossal dielectric constant value of ∼104 at room temperature. The response is similar to that observed for relaxorferroelectrics. IS data analysis indicates the ceramics to be electrically heterogeneous semiconductor consisting of semiconducting grains with dielectric constant 30 and more resistive grain boundaries with effective dielectric constant ∼104. We conclude, therefore that grain boundary effect is the primary source for the high effective permittivity in PrFeO3 ceramics.  相似文献   

3.
Using picoseconds time domain reflectometry, dielectric relaxation studies have been carried out for formamide (FMD)–propylene glycol (PLG) mixtures over the frequency range from 10?MHz to 20?GHz at various temperatures. The dielectric parameters, i.e. static dielectric constant (ε 0) and relaxation time (τ), have been obtained by Fourier transform and least squares fit methods. The excess dielectric properties and Kirkwood correlation factor of the mixtures have also been determined. The Kirkwood angular correlation factor is greater than one (g eff?>?1) in FMD-rich region and less than one (g eff?<?1) in PLG-rich region, which indicates that in the mixture the dipole pairs have been formed in such a way that their orientation is parallel in FMD-rich region and antiparallel in the PLG-rich region.  相似文献   

4.
A styrene–butadiene–styrene block copolymer (SBS) and a plasticized SBS were studied as a function of temperature by an ultrasonic wave propagation technique at 9 MHz. Two absorption maxima were found for each of these polymers, one being attributable to the primary glass transition of the polybutadiene blocks and the other to that of the polystyrene blocks. The SBS was cast from two different solvents, namely benzene and tetrahydrofuran–methyl ethyl ketone. Parallel dielectric loss measurements were also made of the SBS in the frequency range of 50–105 Hz. Relaxation temperatures determined from the ultrasonic and dielectric loss maxima over a range of measurement frequencies can be correlated by an Arrhenius-type equation. The polystyrene loss peak in the ultrasonic data was found to be much weaker than the polybutadiene loss peak. However, these two peaks were of comparable magnitude in dielectric data. This observation was interpreted as being due to the onset of structured–unstructured (heterophase to homogeneous) transitions at sufficiently high temperatures. Ultrasonic data were also compared with low-frequency dynamic mechanical data (11 Hz) and stress relaxation data (102–105 sec) through the use of simple time–temperature superposition principle. Considerable discrepancies were found by using this principle, indicating that the heterophase SBS block copolymer was thermorheologically complex.  相似文献   

5.
Absorption spectra, and hence the dielectric properties, of poly(vinylidene fluoride-tri-fluoroethylene) copolymers have been obtained by far infrared spectroscopy in the frequency range 15–55 cm?1. We have studied the evolutions of the absorption coefficient and imaginary part of the dielectric constant as a function of poling field and copolymer composition. During the phase transition from form II to form I, the whole absorption presents a strong increase. This behavior is explained by polarizability changes at phase transition.  相似文献   

6.
Next generation microelectronic packaging requirements are driving the need to produce increasingly lower dielectric constant materials while maintaining high thermal stability and ease of processing. Efforts have focused on the synthesis and analysis of new polymers with the goals of high thermal stability [degradation temperature (Td) > 400 °C, low glass‐transition temperature (Tg) > 350 °C], low water uptake (<1%), solubility in selected organic solvents, dielectric constant less than 2.5, and low thermal expansion coefficient. These stringent combined goals have been largely achieved with flexible aromatic benzoxazole polymers. Intramolecular hydrogen bonding between pendant hydroxyl groups and the double‐bond nitrogen of the benzoxazole has been exploited to increase the polymer Tg, whereas the incorporation of perfluoroisopropyl units effectively decreases the dielectric constant. Out‐of‐plane impedance measurements on films of materials in this family (38–134 μm thick) have resulted in typical dielectric values of 2.1–2.5 at 1 MHz, depending on copolymer ratios and functionalizations. Results have been correlated with optical waveguide measurements of films 4‐μm thick to determine film anisotropy and the high‐frequency dielectric constant, and have been corroborated by in‐plane interdigitated electrode dielectric measurements on samples 0.75 μm thick. Candidate materials exhibited extremely low water uptake (0.2%) even after submersion in boiling water for several days. Dynamic mechanical analysis of the polymers enabled the determination of the influence of intermolecular hydrogen bonding on the Tg and loss tangent magnitude. Finally, the coefficient of thermal expansion has been examined and correlated with copolymer constitution. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1991–2003, 2000  相似文献   

7.
Abstract

Soft mode and Goldstone mode properties have been studied for a fluorinated substance. The dielectric spectra have been measured on the planar oriented samples, in the frequency range from 10 Hz to 10 MHz. The thickness of the sample was 10 μm and two kinds of capacitors were used: (i) a low resistance EHC cell and (ii) gold coated electrodes. A bias field up to 10kV cm?1 has been applied to show the existence of both the soft mode and domain mode in the S*c phase below T c. In the S*c phase a strong Goldstone mode has been observed with a low critical frequency (v G C = 15 Hz). The high frequency side at the Goldstone mode spectrum is accompanied by a shoulder which consists of the soft mode and domain mode as well. In the vicinity of the S*A-S*C transition the dielectric parameters of the soft mode obey a Curie-Weiss law. The slope ratio is equal to ?1·62 for the inverse of dielectric increments (Δ∈?1) and ?1·73 for the critical frequencies (v c) obtained by using gold electrodes. The respective values received for the EHC cell are ?4·14 and ?2·1. The dielectric parameters of the domain mode have been obtained versus temperature and bias field. We can qualitatively show that a high frequency molecular relaxation is present in the S*A and S*C phases as the high frequency limit of dielectric permittivity is distinctly higher than the refractive index squared.  相似文献   

8.
In this study, varying % Bi-doped on 1% Ce-doped ZnO (1CZ) nanoparticles (X% B-1CZ) were synthesized via a facile, simple, low-cost, sol–gel process. Various characterization techniques were employed to characterize the synthesized compound, while the dielectric properties i.e. dielectric constant, dielectric loss and AC conductivity against frequency were studied with the help of a precision impedance analyzer. It was observed that by increasing bismuth content in the nanoparticles, the dielectric constant also increased in the range (1.47 × 106 – 4.02 × 106) at 20 Hz, and vice versa for dielectric loss decreased from 1.05 × 106 to 0.39 × 106. The role of prepared compounds as photocatalysts was also investigated against methylene blue under ultraviolet irradiation. The degradation efficiency, as well as the dielectric properties of 7% Bi-doped on 1% Ce-doped ZnO (7%B-1CZ), were found to be the best. Overall, it was found that the synthesized compounds proved promising candidates with enhanced photocatalytic & dielectric properties and hence could safely be employed for environmental remediation purposes and energy storage devices.  相似文献   

9.
The interaction of Fe2O3 nanoparticles emphasized between poly(propylene glycol) (PPG 4000) and silver triflate (AgCF3SO3) on the conformal changes of coordination sites and the electrochemical properties have been investigated. On the influence of Fe2O3 nanoparticles distribution, the interactions between the ether oxygen in C–O–C of the polymer chain with Ag+ ion as a result of bond strength of the C–O–C stretching vibration, the end group effect has been examined by Fourier transform infrared (FT-IR) spectroscopy. The formation of transient cross-links between polymer chains and filler particles appears to be a characteristic change in the glass transition temperature (T g) and enhance the effective number of cations as well. The strength of ion–polymer interactions was revealed by the transport of ions, t Ag+, and found to be in the range of 0.42–0.50, and the ionic conductivity was ascertained by complex impedance analysis with a maximum of 9.2?×?10?4 S cm?1 at 298 K with a corresponding concentration of 10 wt% Fe2O3 nanoparticles. The temperature dependence of conductivity has been examined based on the Vogel–Tammann–Fulcher (VTF) equation, thereby suggesting the segmental chain motion and free volume changes. From the impedance data, both the dielectric and modulus behaviours have been revealed and both were well correlated as a function of frequency.  相似文献   

10.
11.
Thermodynamic, dielectric, optical and switching parameters of a single-phase antiferroelectric (AF) liquid crystalline material (S)-(+)-4-(1-methylheptyloxycarbonyl)-2,3-difluorophenyl 4′-[3-(2,2,3,3,4,4,4-heptafluorobutoxy)prop-1-oxy]biphenyl-4-carboxylate have been studied. These studies show wide temperature range (~97.8°C–25.3°C) of AF SmC*A phase in the material. The dielectric studies have been carried out in the frequency range of 1 Hz–35 MHz under planar anchoring conditions of the molecules. The dielectric spectrum of the SmC*A phase exhibits three relaxation modes due to the collective as well as individual molecular processes. Relaxation frequencies of these modes lie in the range of kHz–MHz regions. Relative permittivity of the material (at 10 kHz) varies from ~8.8 at 98.8°C to 9.9 at 41.0°C. Maximum tilt of the molecule in the SmC*A phase is ~43°C. Spontaneous polarisation, switching time and rotational viscosity have also been determined. The maximum value of PS is ~439 nC/cm2 and switching time is the order of 1–5 millisecond, whereas viscosity is moderate.  相似文献   

12.
In this work thermal relaxations of chitosan are reported by using a novel methodology that includes subtraction of the dc conductivity contribution, the exclusion of contact and interfacial polarization effects, and obtaining a condition of minimum moisture content. When all these aspects are taken into account, two relaxations are clearly revealed in the low frequency side of the impedance data. We focus on the molecular motions in neutralized and non‐neutralized chitosan analyzed by dielectric spectroscopy in the temperature range from 25 to 250 °C. Low and high frequency relaxations were fitted with the Havriliak and Negami model in the 10?1 to 108 Hz frequency range. For the first time, the low frequency α‐relaxation associated with the glass‐rubber transition has been detected by this technique in both chitosan forms for moisture contents in the range 0.05 to 3 wt % (ca. 18–62 °C). A strong plasticizing effect of water on this primary α‐relaxation is observed by dielectric spectroscopy and is supported by dynamic mechanical analysis measurements. In the absence of water (<0.05 wt %) the α‐relaxation is obscured in the 20–70 °C temperature range by a superposition of two low frequency relaxation processes. The activation energy for the σ‐relaxation is about 80.0–89.0 kJ/mol and for β‐relaxation is about 46.0–48.5 kJ/mol and those values are in agreement with that previously reported by other authors. The non‐neutralized chitosan possess higher ion mobility than the neutralized one as determined by the frequency location of the σ‐relaxation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2259–2271, 2009  相似文献   

13.
The dielectric properties of peroxide cross-linked polyethylene–carbon black composite systems are described in the frequency range between 10 and 107 Hz as a function of frequency and carbon black loading. Very high values for the dielectric constant were obtained when measuring conductive samples. A percolative model gives a suitable explanation, within experimental limits of the properties of the systems studied.  相似文献   

14.
A study of far-IR (5–400 cm−1) reflectivity spectra of potassium pentaborate tetrahydrate (KB5O8·4H2O) crystal has been performed in the temperature range 90–300 K. Frequencies of the lattice longitudinal optical and transverse optical modes, their intensities, dampings as well as oscillator strengths and induced dipole moments, have been determined for this compound at two temperatures (90 and 300 K). Estimations of low frequency dielectric parameters from IR reflectivity spectra allowed us to evaluate the room temperature dispersion properties of the dielectric function in a wide frequency range.  相似文献   

15.
In this paper, we have investigated relaxation mechanisms and dielectric characteristics of an Sr0.61−xBa0.39Nb2O6Cex (abbreviated as SBN61 and x=0.0066) single crystal with dielectric spectroscopy measurements. The crystal undergoes a ferroelectric phase transition at 340 K. The temperature dependence of the real and imaginary part of the complex dielectric susceptibility in the vicinity of ferroelectric–paraelectric phase transition has been studied in the frequency region 100 Hz–10 mHz. The measurement of the dielectric constants of the real and imaginary parts shows strong frequency dependence. The investigations of the dielectric constant using Cole–Cole plots revealed a non-Debye-type dielectric relaxation for Ce+3-doped SBN61. It reveals the coexistence of the two dielectric relaxators in the vicinity of the phase transition.  相似文献   

16.
The resistivity and dielectric constant for carbon black (5–12 vol-%) in a nonconducting matrix have been measured over the range 20–90°C and dc to 2–105 Hz. Styrene–butadiene rubber dissolved in tetracosane (22 parts SBR to about 70 parts wax) constituted the matrix. Wide variations in resistivity and dielectric constant with temperature and/or frequency were observed. A theory is presented to explain the experimental observations. It correctly predicts the qualitative features of the experimental results but its predictions are not quantitatively accurate.  相似文献   

17.
The structural relaxation process in styrene-acrylonitrile copolymer has been characterized by means of differential scanning calorimetry (DSC) experiments. The results in the form of heat capacity, cp(T), curves are analyzed using a model for the evolution of the configurational entropy during the process recently proposed by the authors.11,12 The model simulation allows one to determine the enthalpy (or entropy) structural relaxation times and the β parameter of the Kohlrausch-Williams-Watts equation characterizing the width of the distribution of relaxation times. This material parameters are compared with their analogues determined from the dielectric and dynamic-mechanical relaxation processes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2201–2217, 1997  相似文献   

18.
Microwave radiation emitted at a frequency of 915 MHz and 5.8 GHz from a newly fabricated single-mode resonance microwave apparatus is herein proposed for use in microwave-assisted organic syntheses. The usefulness of 5.8-GHz microwaves is demonstrated by the solvent-free synthesis of 2-allylphenol through a Claisen rearrangement process, and by the synthesis of the C12–C2–C12 Gemini surfactant in ethanol solvent undertaken to verify the usefulness of the 915-MHz frequency. These two model reactions have shown the advantage of these two microwave frequencies in that the observed efficiencies were greater than when employing the more commonly used 2.45-GHz microwaves. Dielectric parameters (dissipation factor: tan δ, dielectric constant: ε′, and dielectric loss: ε′′) have also been assessed for water and 22 common organic solvents typically used in organic syntheses, together with the temperature dependence of the dielectric parameters. Temperature–time profiles have been determined and rates of increase of temperature computed. The 5.8-GHz microwaves were effective in heating non-polar solvents, while the 915-MHz microwave frequency was most suitable for heating the alcohols.  相似文献   

19.
Research into the electrical‐thermal aging properties of cross‐linked polyethylene (XLPE) cable has great significance, because of its wide application. This study conducted accelerated electrical‐thermal aging tests on 10‐kV XLPE cable in order to assess the cable's mechanical and dielectric properties. After being aged by applying 34.8‐kV AC voltage at the four temperatures of 90, 103, 114, and 135°C, the cable samples were taken out in five stages according to the aging time and cut into slices. The slices were conducted experiments to test the breaking elongation, tensile strength, gel content, breakdown voltage, and frequency spectrums of the dielectric constant and dielectric loss. The results demonstrate that the mechanical strength and gel content of XLPE vary greatly under different aging temperatures, a finding that is associated with the crystallization characteristics of the material. The breakdown voltage shows a slight decreasing trend with aging time. The dielectric constant decreases with aging time in high‐frequency areas (103–106 Hz), while the dielectric loss factor increases with aging time at low frequencies (10?2–0 Hz). These two parameters can be used to characterize the degree of aging in cable. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A mono‐lancunary keggin‐type decatungstosilicate (SiW11) polyoxometalate (POM) modified by γ‐aminopropyltriethoxysilane (KH550) was incorporated into polyimide (PI) through copolymerization. Nuclear magnetic resonance (NMR), fourier transition infrared spectroscopy (FTIR), and wide angle X‐ray diffraction (WAXD) were used to characterize the structure and composition of the polyoxometalate–organosilane hybrid (SiW11KH550) and PI/SiW11KH550 copolymers. The differential scanning calorimetry (DSC) studies indicate that the glass transition temperature (Tg) of PI/SiW11KH550 copolymers increases from 330°C (for neat PI) to 409°C (for the copolymer sample with 10 wt% of SiW11KH550). Dielectric measurement showed that both the dielectric constant and the dielectric loss for the copolymer thin films decreased with the increase in SiW11KH550 content, and the dielectric constant and dielectric loss values decreased to 2.1 and 3.54 × 10?3, respectively, for the copolymer sample with 10 wt% of SiW11KH550. The incorporation of SiW11KH550 into polymer matrices is a promising approach to prepare PI films with a low dielectric constant and low dielectric loss. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号