首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Magnetic zeolitic imidazolate framework 67/graphene oxide composites were synthesized by one‐pot method at room temperature for the first time. Electrostatic interactions between positively charged metal ions and both negatively charged graphene oxide and Fe3O4 nanoparticles were expected to chemically stabilize magnetic composites to generate homogeneous magnetic products. The additional amount of graphene oxide and stirring time of graphene oxide, Co2+, and Fe3O4 solution were investigated. The zeolitic imidazolate framework 67 and Fe3O4 nanoparticles were uniformly attached on the surface of graphene oxide. The composites were applied to magnetic solid‐phase extraction of five neonicotinoid insecticides in environmental water samples. The main experimental parameters such as amount of added magnetic composites, extraction pH, ionic strength, and desorption solvent were optimized to increase the capacity of adsorbing neonicotinoid insecticides. The results show limits of detection at signal‐to‐noise ratio of 3 were 0.06–1.0 ng/mL under optimal conditions. All analytes exhibited good linearity with correlation coefficients of higher than 0.9915. The relative standard deviations for five neonicotinoid insecticides in environmental samples ranged from 1.8 to 16.5%, and good recoveries from 83.5 to 117.0% were obtained, indicating that magnetic zeolitic imidazolate framework 67/graphene oxide composites were feasible for analysis of trace analytes in environmental water samples.  相似文献   

2.
The integration of metal/metal oxide nanoparticles (NPs) into metal–organic frameworks (MOFs) to form composite materials has attracted great interest due to the broad range of applications. However, to date, it has not been possible to encapsulate metastable NPs with high catalytic activity into MOFs, due to their instability during the preparation process. For the first time, we have successfully developed a template protection–sacrifice (TPS) method to encapsulate metastable NPs such as Cu2O into MOFs. SiO2 was used as both a protective shell for Cu2O nanocubes and a sacrificial template for forming a yolk–shell structure. The obtained Cu2O@ZIF‐8 composite exhibits excellent cycle stability in the catalytic hydrogenation of 4‐nitrophenol with high activity. This is the first report of a Cu2O@MOF‐type composite material. The TPS method provides an efficient strategy for encapsulating unstable active metal/metal oxide NPs into MOFs or maybe other porous materials.  相似文献   

3.
Monolithic porous copolymers with 3D structure were prepared via CO2‐in‐water high internal phase emulsions template by graft copolymerization of sodium methacrylate (MAANa) on to methyl cellulose (MC) backbone. The yielded copolymer monoliths are characterized by Fourier transform infrared spectra, scanning electron microscopy (SEM), and mechanical instrument, the swelling degree of MC‐g‐PMAANa monoliths with different crosslinker in diverse pH were investigated. The adsorption performance of monolith to Cu(II) were conducted to explore its adsorption capacity to heavy metal ions from the wastewater. Then, a strategy of in situ growth of metal‐organic frameworks (MOFs) on MC‐g‐PMAANa that adsorbed with metal ions was proposed first. The X‐ray powder diffraction, SEM, and Brunauer‐Emmett‐Teller (BET) surface area result of MC‐g‐PMAANa/MOFs composites indicated that the MOFs nanoparticles were grown uniformly on the monolith wall without destroying its original 3D porous structure. Compared with MOFs nanoparticle, MC‐g‐PMAANa/MOFs composites have advantages of easy operation and handle, which more conform to practical application. Furthermore, the antibacterial activity of MC‐g‐PMAANa/MOFs was evaluated by disk agar diffusion and optical density methods. In addition, MC‐g‐PMAANa/Cu‐BTC composite was applied to dye adsorption, which has proved the underlying application of such composites in dye removal.  相似文献   

4.
The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self‐assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well‐controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet‐immersion method, transition‐metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three‐dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium‐ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra‐high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4–graphene composites can deliver a reversible specific capacity of 1427.5 mAh g?1 at a high current density of 1000 mA g?1 as anode materials in lithium‐ion batteries. Furthermore, nanoporous Co3O4–graphene composites achieved a high supercapacitance of 424.2 F g?1. This work demonstrated that the as‐developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications.  相似文献   

5.
Three‐dimensional graphene‐supported mesoporous silica@Fe3O4 composites (mSiO2@Fe3O4‐G) were prepared by modifying mesoporous SiO2‐coated Fe3O4 onto hydrophobic graphene nanosheets through a simple adsorption co‐condensation method. The obtained composites possess unique properties of large surface area (332.9 m2/g), pore volume (0.68 cm3/g), highly open pore structure with uniform pore size (31.1 nm), as well as good magnetic separation properties. The adsorbent (mSiO2@Fe3O4‐G) was used for the magnetic solid‐phase extraction of seven pesticides with benzene rings in different aqueous samples before high‐performance liquid chromatography. The main parameters affecting the extraction such as adsorbent amount, volume of elution solvent, time of extraction and desorption, salt effect, oscillation rate were investigated. Under the optimal conditions, this method provided low limits of detection (S/N = 3, 0.525–3.30 μg/L) and good linearity (5.0–1000 μg/L, R2 > 0.9954). Method validation proved the feasibility of the developed adsorbent, which has a high extraction efficiency and excellent enhancement performance for pesticides in this study. The proposed method was successfully applied to real aqueous samples, and satisfactory recoveries ranging from 77.5 to 113.6% with relative standard deviations within 9.7% were obtained.  相似文献   

6.
Hierarchical macro‐/mesoporous N‐doped TiO2/graphene oxide (N‐TiO2/GO) composites were prepared without using templates by the simple dropwise addition mixed solution of tetrabutyl titanate and ethanol containg graphene oxide (GO) to the ammonia solution, and then calcined at 350 °C. The as‐prepared samples were characterized by scanning electron microscopy (SEM), Brunauer‐Emmett‐Teller (BET) surface area, X‐ray diffraction (XRD), Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), and UV‐Vis absorption spectroscopy. The photocatalytic activity was evaluated by the photocatalytic degradation of methyl orange in an aqueous solution under visible‐light irradiation. The results show that N‐TiO2/GO composites exhibited enhanced photocatalytic activity. GO content exhibited an obvious influence on photocatalytic performance, and the optimal GO addition content was 1 wt%. The enhanced photocatalytic activity could be attributed to the synergetic effects of three factors including the improved visible light absorption, the hierarchical macro‐mesoporous structure, and the efficient charge separation by GO.  相似文献   

7.
We have designed a new Pt/SnO2/graphene nanomaterial by using L ‐arginine as a linker; this material shows the unique Pt‐around‐SnO2 structure. The Sn2+ cations reduce graphene oxide (GO), leading to the in situ formation of SnO2/graphene hybrids. L ‐Arginine is used as a linker and protector to induce the in situ growth of Pt nanoparticles (NPs) connected with SnO2 NPs and impede the agglomeration of Pt NPs. The obtained Pt/SnO2/graphene composites exhibit superior electrocatalytic activity and stability for the ethanol oxidation reaction as compared with the commercial Pt/C catalyst owing to the close‐connected structure between the Pt NPs and SnO2 NPs. This work should have a great impact on the rational design of future metal–metal oxide nanostructures with high catalytic activity and stability for fuel cell systems.  相似文献   

8.
Porous metal‐organic frameworks (MOFs) loading metal nanoparticles to form a composite photocatalyst demonstrated unique advantages. Modification of the electron donating group on the aromatic linkers of MOFs could increase the absorption range of light, thereby increasing the photocatalytic activity. In this study, we prepared a composite photocatalyst using a stable NH2‐functionalized MOF (UiO‐66‐NH2) to load semiconductor Ag/AgBr nanoparticles, and the resultant composites have intense optical absorption throughout visible light range. The greatly enhanced optical absorption and the unique hetero‐junction between Ag/AgBr and UiO‐66‐NH2 render efficient separation and utilization of photogenerated electron‐hole pairs. Therefore, Ag/AgBr@UiO‐66‐NH2 showed much more excellent photocatalytic activity, compared with unmodified UiO‐66 loading Ag/AgBr (Ag/AgBr@UiO‐66) and reported AgX@MOF catalysts. Moreover, the composite photocatalysts showed excellent stability during cycling experiment.  相似文献   

9.
A series of Ag‐enhanced TiO2–x/C composites (Ag/TiO2–x/C composites) with metal‐organic frameworks (MOFs) as precursors were prepared, and their photocatalytic activities were evaluated by the UV‐light driven photodegradation behaviors of methyl blue (MB). The as‐obtained samples were characterized by several techniques such as SEM, XRD, N2‐adsorption, XPS, UV/Vis spectrophotometry and UV/Vis diffuse‐reflectance spectra. The best photocatalytic performance was achieved in Ag/TiO2–x/C composite pyrolyzed at 1000 °C (ATC‐P10) due to rapid capture of electrons caused by silver doping, higher density of TiO2–x lattice oxygen vacancies for better trapping of electrons, and high surface area due to reduction and evaporation of metallic Zn. No obvious deactivation was observed after 10 cycles of UV‐light degradation of MB under the same experimental conditions. This report reveals a new approach to prepare stable and highly efficient UV‐light‐driven photocatalysts for organic pollutants in water.  相似文献   

10.
An SO3H‐functionalized nano‐MGO‐D‐NH2 catalyst has been prepared by multi‐functionalization of a magnetic graphene oxide (GO) nanohybrid and evaluated in the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3‐d]pyrimidinone derivatives. The GO/Fe3O4 (MGO) hybrid was prepared via an improved Hummers method followed by the covalent attachment of 1,4‐butanesultone with the amino group of the as‐prepared polyamidoamine‐functionalized MGO (MGO‐D‐NH2) to give double‐functionalized magnetic nanoparticles as the catalyst. The prepared nanoparticles were characterized to confirm their synthesis and to precisely determine their physicochemical properties. In summary, the prepared catalyst showed marked recyclability and catalytic performance in terms of reaction time and yield of products. The results of this study are hoped to aid the development of a new class of heterogeneous catalysts to show high performance and as excellent candidates for industrial applications.  相似文献   

11.
Interfacing graphene with metal oxides is of considerable technological importance for modulating carrier density through electrostatic gating as well as for the design of earth‐abundant electrocatalysts. Herein, we probe the early stages of the atomic layer deposition (ALD) of HfO2 on graphene oxide using a combination of C and O K‐edge near‐edge X‐ray absorption fine structure spectroscopies and X‐ray photoelectron spectroscopy. Dosing with water is observed to promote defunctionalization of graphene oxide as a result of the reaction between water and hydroxyl/epoxide species, which yields carbonyl groups that further react with migratory epoxide species to release CO2. The carboxylates formed by the reaction of carbonyl and epoxide species facilitate binding of Hf precursors to graphene oxide surfaces. The ALD process is accompanied by recovery of the π‐conjugated framework of graphene. The delineation of binding modes provides a means to rationally assemble 2D heterostructures.  相似文献   

12.
Graphene is a 2D sp2‐hybridized carbon sheet and an ideal material for the adsorption‐based separation of organic pollutants. However, such potential applications of graphene are largely limited, owing to their poor solubility and extensive aggregation properties through graphene? graphene interactions. Herein, we report the synthesis of graphene‐based composites with γ‐Fe2O3 nanoparticle for the high‐performance removal of endocrine‐disrupting compounds (EDC) from water. The γ‐Fe2O3 nanoparticles partially inhibit these graphene? graphene interactions and offer water dispersibility of the composite without compromising much of the high surface area of graphene. In their dispersed form, the graphene component offers the efficient adsorption of EDC, whilst the magnetic iron‐oxide component offers easier magnetic separation of adsorbed EDC.  相似文献   

13.
Four new three‐dimensional isostructural lanthanide–cadmium metal–organic frameworks (Ln–Cd MOFs), [LnCd2(imdc)2(Ac)(H2O)2]?H2O (Ln=Pr ( 1 ), Eu ( 2 ), Gd ( 3 ), and Tb ( 4 ); H3imdc=4,5‐imidazoledicarboxylic acid; Ac=acetate), have been synthesized under hydrothermal conditions and characterized by IR, elemental analyses, inductively coupled plasma (ICP) analysis, and X‐ray diffraction. Single‐crystal X‐ray diffraction shows that two LnIII ions are surrounded by four CdII ions to form a heteronuclear building block. The blocks are further linked to form 3D Ln–Cd MOFs by the bridging imdc3? ligand. Furthermore, the left‐ and right‐handed helices array alternatively in the lattice. Eu–Cd and Tb–Cd MOFs can emit characteristic red light with the EuIII ion and green light with the TbIII ion, respectively, while both Gd–Cd and Pr–Cd MOFs generate blue emission when they are excited. Different concentrations of Eu3+ and Tb3+ ions were co‐doped into Gd–Cd/Pr–Cd MOFs, and tunable luminescence from yellow to white was achieved. White‐light emission was obtained successfully by adjusting the excitation wavelength or the co‐doping ratio of the co‐doped Gd–Cd and Pr–Cd MOFs. These results show that the relative emission intensity of white light for Gd–Cd:Eu3+,Tb3+ MOFs is stronger than that of Pr–Cd:Eu3+,Tb3+ MOFs, which implies that the Gd complex is a better matrix than the Pr complex to obtain white‐light emission materials.  相似文献   

14.
Core‐shell carbon‐coated LiFePO4 nanoparticles were hybridized with reduced graphene (rGO) for high‐power lithium‐ion battery cathodes. Spontaneous aggregation of hydrophobic graphene in aqueous solutions during the formation of composite materials was precluded by employing hydrophilic graphene oxide (GO) as starting templates. The fabrication of true nanoscale carbon‐coated LiFePO4‐rGO (LFP/C‐rGO) hybrids were ascribed to three factors: 1) In‐situ polymerization of polypyrrole for constrained nanoparticle synthesis of LiFePO4, 2) enhanced dispersion of conducting 2D networks endowed by colloidal stability of GO, and 3) intimate contact between active materials and rGO. The importance of conducting template dispersion was demonstrated by contrasting LFP/C‐rGO hybrids with LFP/C‐rGO composites in which agglomerated rGO solution was used as the starting templates. The fabricated hybrid cathodes showed superior rate capability and cyclability with rates from 0.1 to 60 C. This study demonstrated the synergistic combination of nanosizing with efficient conducting templates to afford facile Li+ ion and electron transport for high power applications.  相似文献   

15.
Graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin multilayer films composed of graphene sheet (GS) and mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were fabricated easily by two steps. First, negatively charged graphene oxide (GO) and positively charged mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were layer‐by‐layer (LBL) self‐assembled on glassy carbon electrode (GCE) modified with a layer of poly(diallyldimethylammonium chloride) (PDDA). Then graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GS/NH2β‐CD) multilayer films were built up by electrochemical reduction of graphene oxide/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GO/NH2β‐CD). Combining the high surface area of GS and the active recognition sites on β‐cyclodextrin (β‐CD), the GS/NH2β‐CD multilayer films show excellent electrochemical sensing performance for the detection of DA with an extraordinary broad linear range from 2.53 to 980.05 µmol·L?1. This study offers a simple route to the controllable formation of graphene‐based electrochemical sensor for the detection of DA.  相似文献   

16.
The metal ions in a neutral Zn–MOF constructed from tritopic triacid H3L with inherent concave features, rigid core, and peripheral flexibility are found to exist in two distinct SBUs, that is, 0D and 1D. This has allowed site‐selective postsynthetic metal exchange (PSME) to be investigated and reactivities of the metal ions in two different environments in coordination polymers to be contrasted for the first time. Site‐selective transmetalation of Zn ions in the discrete environment is shown to occur in a single crystal‐to‐single crystal (SCSC) fashion, with metal ions such as Fe3+, Ru3+, Cu2+, Co2+, etc., whereas those that are part of 1D SBU sustain structural integrity, leading to novel bimetallic MOFs, which are inaccessible by conventional approaches. To the best of our knowledge, site‐selective postsynthetic exchange of an intraframework metal ion in a MOF that contains metal ions in discrete as well as polymeric SBUs is heretofore unprecedented.  相似文献   

17.
A dispersive micro‐solid‐phase extraction procedure coupled with capillary electrophoresis ultraviolet detection was developed for determination of verapamil in plasma samples. Graphene oxide/polydopamin was synthesized by a one‐step polymerization method, and graphene oxide/Fe3O4 (magnetic graphene oxide) nanocomposite was prepared by coprecipitation method. Moreover, they were fully characterized. The use of hazardous and water‐immiscible solvents was scaled down, and only 500 μL of acetone was required as the desorption solvent. The detector response concentration plots were linear in the range of 5–500 ng/mL, and the proposed method was validated according to guidelines. The precision and accuracy were less than 15%. Dispersive micro‐solid‐phase extraction method provides a rapid, environmentally friendly, and sensitive analysis for the verapamil in patient plasma samples, which is adequate for therapeutic drug monitoring and pharmacokinetic studies.  相似文献   

18.
A simple, rapid and efficient synthesis of the metal‐organic framework (MOF) HKUST‐1 [Cu3(1,3,5‐benzene‐tri‐carboxilic‐acid)2] by microwave irradiation is described, which afforded a homogeneous and highly selective material. The unusually short time to complete the synthesis by microwave irradiation is mainly attributable to rapid nucleation rather than to crystal growth rate. Using this method, HKUST‐1‐MW (MW=microwave) could be prepared within 20 min, whereas by hydrothermal synthesis, involving conventional heating, the preparation time is 8 h. Work efficiency was improved by the good performance of the obtained HKUST‐1‐MW which exhibited good selective adsorption of heavy metal ions, as well as a remarkably high adsorption affinity and adsorption capacity, but no adsorption of Hg2+ under the same experimental conditions. Of particular importance is the preservation of the structure after metal‐ion adsorption, which remained virtually intact, with only a few changes in X‐ray diffraction intensity and a moderate decline in surface area. Synthesis of the polyoxometalate‐containing HKUST‐1‐MW@H3PW12O40 afforded a MOF with enhanced stability in water, due to the introduced Keggin‐type phosphotungstate, which systematically occluded in the cavities constituting the walls between the mesopores. Different Cu/W ratios were investigated according to the extrusion rate of cooper ions concentration, without significant structural changes after adsorption. The MOFs obtained feature particle sizes between 10–20 μm and their structures were determined using synchrotron‐based X‐ray diffraction. The results of this study can be considered important for potentially wider future applications of MOFs, especially to attend environmental issues.  相似文献   

19.
The properties of supported non‐noble metal particles with a size of less than 1 nm are unknown because their synthesis is a challenge. A strategy has now been created to immobilize ultrafine non‐noble metal particles on supports using metal–organic frameworks (MOFs) as metal precursors. Ni/SiO2 and Co/SiO2 catalysts were synthesized with an average metal particle size of 0.9 nm. The metal nanoparticles were immobilized uniformly on the support with a metal loading of about 20 wt %. Interestingly, the ultrafine non‐noble metal particles exhibited very high activity for liquid‐phase hydrogenation of benzene to cyclohexane even at 80 °C, while Ni/SiO2 with larger Ni particles fabricated by a conventional method was not active under the same conditions.  相似文献   

20.
A graphene oxide‐coated capillary was fabricated by using 3‐aminopropyltriethoxysilane as the cross‐linking agent. It was used for the separation and detection of three endocrine‐disrupting chemicals, including bisphenol A, 4‐nonylphenol, and 4‐octylphenol by capillary electrochromatography. Due to the hydrophobicity, hydrogen bonding, and π–π interaction between graphene oxide and the analytes, the three analytes could be well separated in pH = 11.0, 20 mmol/L Na2B4O7‐NaOH/methanol mobile phase (50:50, v/v) within 950 s. After preconcentration, the detection limits were 6.7 × 10?10, 3.3 × 10?9, and 6.7 × 10?10 mol/L (S/N = 3) for bisphenol A, nonylphenol, and octylphenol, respectively. The developed method was successfully applied to the determination of the above analytes in water samples. The satisfactory result demonstrated that the graphene oxide coated capillary used in capillary electrochromatography with amperometric detection was convenient to prepare, highly stable, and had good reproducibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号