首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Ultrafast multidimensional infrared spectroscopy is a powerful method for resolving features of molecular structure and dynamics that are difficult or impossible to address with linear spectroscopy. Augmenting the IR pulse sequences by resonant or nonresonant UV, Vis, or NIR pulses considerably extends the range of application and creates techniques with possibilities far beyond a pure multidimensional IR experiment. These include surface‐specific 2D‐IR spectroscopy with sub‐monolayer sensitivity, ultrafast structure determination in non‐equilibrium systems, triggered exchange spectroscopy to correlate reactant and product bands, exploring the interplay of electronic and nuclear degrees of freedom, investigation of interactions between Raman‐ and IR‐active modes, imaging with chemical contrast, sub‐ensemble‐selective photochemistry, and even steering a reaction by selective IR excitation. We give an overview of useful mixed IR/non‐IR pulse sequences, discuss their differences, and illustrate their application potential.  相似文献   

2.
The geometric, spectroscopic, and electronic properties of neutral yttrium‐doped gold clusters AunY (n=1–9) are studied by far‐infrared multiple photon dissociation (FIR‐MPD) spectroscopy and quantum chemical calculations. Comparison of the observed and calculated vibrational spectra allows the structures of the isomers present in the molecular beam to be determined. Most of the isomers for which the IR spectra agree best with experiment are calculated to be the energetically most stable ones. Attachment of xenon to the AunY cluster can cause changes in the IR spectra, which involve band shifts and band splittings. In some cases symmetry changes, as a result of the attachment of xenon atoms, were also observed. All the AunY clusters considered prefer a low spin state. In contrast to pure gold clusters, which exhibit exclusively planar lowest‐energy structures for small sizes, several of the studied species are three‐dimensional. This is particularly the case for Au4Y and Au9Y, while for some other sizes (n=5, 8) the 3D structures have an energy similar to that of their 2D counterparts. Several of the lowest‐energy structures are quasi‐2D, that is, slightly distorted from planar shapes. For all the studied species the Y atom prefers high coordination, which is different from other metal dopants in gold clusters.  相似文献   

3.
A new 3D MnII metal‐organic framework compound {Mn(phen)(dcbp)}n (H2dcbp = 4,4‐dicarboxy‐2,2′‐bipyridine, phen = 1,10‐phenanthroline) was isolated under hydrothermal conditions and structurally characterized. In the compound, the dcbp ligand is deprotonated to give a neutral species (metal:ligand with 1:1 stoichiometry). Along the c axis, the neighboring MnII ions are linked by two carboxylate bridges in µ2‐coordinating mode to generate a 1D zigzag chain, and these chains are interlinked by dicarboxylate groups of long dcbp ligands to generate a 3D (4,4)‐connected structure with the (42.84) net topology. IR and UV/Vis spectroscopy and variable temperature magnetic susceptibility measurements were made, which indicated weak antiferromagnetic interactions between the MnII ions of the compound.  相似文献   

4.
Determining the structure of reactive intermediates is the key to understanding reaction mechanisms. To access these structures, a method combining structural sensitivity and high time resolution is required. Here ultrafast polarization‐dependent two‐dimensional infrared (P2D‐IR) spectroscopy is shown to be an excellent complement to commonly used methods such as one‐dimensional IR and multidimensional NMR spectroscopy for investigating intermediates. P2D‐IR spectroscopy allows structure determination by measuring the angles between vibrational transition dipole moments. The high time resolution makes P2D‐IR spectroscopy an attractive method for structure determination in the presence of fast exchange and for short‐lived intermediates. The ubiquity of vibrations in molecules ensures broad applicability of the method, particularly in cases in which NMR spectroscopy is challenging due to a low density of active nuclei. Here we illustrate the strengths of P2D‐IR by determining the conformation of a Diels–Alder dienophile that carries the Evans auxiliary and its conformational change induced by the complexation with the Lewis acid SnCl4, which is a catalyst for stereoselective Diels–Alder reactions. We show that P2D‐IR in combination with DFT computations can discriminate between the various conformers of the free dienophile N‐crotonyloxazolidinone that have been debated before, proving antiperiplanar orientation of the carbonyl groups and s‐cis conformation of the crotonyl moiety. P2D‐IR unequivocally identifies the coordination and conformation in the catalyst–substrate complex with SnCl4, even in the presence of exchange that is fast on the NMR time scale. It resolves a chelate with the carbonyl orientation flipped to synperiplanar and s‐cis crotonyl configuration as the main species. This work sets the stage for future studies of other catalyst–substrate complexes and intermediates using a combination of P2D‐IR spectroscopy and DFT computations.  相似文献   

5.
Dealuminated Y zeolites (DAY) were obtained by steaming of NH4NaY at temperatures between 450 °C and 700 °C. They were characterised by means of 27Al and 29Si MAS NMR, IR spectroscopic and XRD measurements. The Si/Al framework ratios of samples were calculated using the 29Si MAS NMR signal intensities, the wave numbers of the double‐ring vibration band wDR and the asymmetrical TOT valence vibration wTOT of IR spectra as well as the XRD lattice constant a0. In contrast to actual Si/Al ratio obtained from wDR and a0, the NMR spectroscopic and wTOT values were determined to be too high because of the superposition of the signals coming from dealuminated zeolite framework and silica gel which forms in the zeolite as a result of steaming. The differently determined Si/Al ratios characterise the siliceous extra‐framework species.  相似文献   

6.
A peptide model is a physical system containing a CONH group, the simplest being HCONHCH3, N‐methylformamide (NMF). We have discovered that NMF and N‐methylacetamide (NMA), which form hydrogen‐bonded oligomers in thin films on a planar AgX fiber, display infrared (IR) spectra with peaks like those of polypeptide helices. Structures can be assigned by their amide I maxima near 1672 (310), 1655 (310), 1653 (α), 1655 (π), and 1635 cm?1 (π), which are the first IR data for the π‐helix. Sharp peaks are an outcome of immobilization of polar species on the polar surface of silver halides. We report the first use of expanded thin‐film IR spectroscopy, in which plots of every spectrum over the amide I–II range show pauses or slow stages in the increase or decrease of absorption. These are identified as static phases followed by dynamic phases, with the incremental gain or loss of a helix turn. A general theory can be stated for such processes. Density functional calculations show that the NMA α‐helix pentamer (crystal structure geometry) is transformed into a π‐helix‐like form. For the first time, an entire sequence (310‐helix, α‐helix, π‐helix, quasiplanar species) of spectra has been recorded for NMA.  相似文献   

7.
The gas‐phase molecular structure of (CH3)3CSNO was investigated by using electron diffraction, allowing the first experimental geometrical parameters for an S‐nitrosothiol species to be elucidated. Depending on the orientation of the ?SNO group, two conformers (anti and syn) are identified in the vapor of (CH3)3CSNO at room temperature, the syn conformer being less abundant. The conformational landscape is further scrutinized by using vibrational spectroscopy techniques, including gas‐phase and matrix‐isolation IR spectroscopy, resulting in a contribution of ca. 80:20 for the anti:syn abundance ratio, in good agreement with the computed value at the MP2(full)/cc‐pVTZ level of approximation. The UV/Vis and resonance Raman spectra also show the occurrence of the conformational equilibrium in the liquid phase, with a moderate post‐resonance Raman signature associated with the 350 nm electronic absorption.  相似文献   

8.
The signatures of nanosolvation on the one‐ and two‐dimensional (1D and 2D) IR spectra of a proton‐transfer mode in a hydrogen‐bonded complex dissolved in polar solvent molecule nanoclusters of varying size are elucidated by using mixed quantum–classical molecular dynamics simulations. For this particular system, increasing the number of solvent molecules successively from N=7 to N=9 initiates the transition of the system from a cluster state to a bulk‐like state. Both the 1D and 2D IR spectra reflect this transition through pronounced changes in their peak intensities and numbers, but the time‐resolved 2D IR spectra also manifest spectral features that uniquely identify the onset of the cluster‐to‐bulk transition. In particular, it is observed that in the 1D IR spectra, the relative intensities of the peaks change such that the number of peaks decreases from three to two as the size of the cluster increases from N=7 to N=9. In the 2D IR spectra, off‐diagonal peaks are observed in the N=7 and N=8 cases at zero waiting time, but not in the N=9 case. It is known that there are no off‐diagonal peaks in the 2D IR spectrum of the bulk version of this system at zero waiting time, so the disappearance of these peaks is a unique signature of the onset of bulk‐like behavior. Through an examination of the trajectories of various properties of the complex and solvent, it is possible to relate the emergence of these off‐diagonal peaks to an interplay between the vibrations of the complex and the solvent polarization dynamics.  相似文献   

9.
Structural dynamics within the distal cavity of myoglobin protein is investigated using 2D‐IR and IR pump–probe spectroscopy of the N≡C stretch modes of heme‐bound thiocyanate and selenocyanate ions. Although myoglobin‐bound thiocyanate group shows a doublet in its IR absorption spectrum, no cross peaks originating from chemical exchange between the two components are observed in the time‐resolved 2D IR spectra within the experimental time window. Frequency–frequency correlation functions of the two studied anionic ligands are obtained by means of a few different analysis approaches; these functions were then used to elucidate the differences in structural fluctuation around ligand, ligand–protein interactions, and the degree of structural heterogeneity within the hydrophobic pocket of these myoglobin complexes.  相似文献   

10.
Chemistry of Polyfunctional Molecules. 133. X‐Ray Crystal Structural, Solid‐state 31P CP/MAS NMR, TOSS, 31P COSY NMR, and Mechanistic Contributions to the Co‐ordination Chemistry of Octacarbonyldicobalt with the Ligands Bis(diphenylphosphanyl)amine, Bis(diphenylphosphanyl)methane, and 1,1,1‐Tris(diphenylphosphanyl)ethane Co2(CO)8 reacts with bis(diphenylphosphanyl)amine, HN(PPh2)2 (Hdppa, 1 ), in two steps to afford the known compound [Co(CO)(Hdppa‐κ2P)2][Co(CO)4] · 2 THF ( 6 a · 2 THF). The intermediate [Co(CO)2(Hdppa‐κ2P) · (Hdppa‐κP)][Co(CO)4] · dioxane · n‐pentane ( 5 · dioxane · n‐pentane) was isolated for the first time and was characterized by X‐ray analysis. The cation 5 + exhibits a slightly distorted trigonal‐bipyramidal geometry. Detailed 31P‐NMR investigations (solid‐state CP/MAS NMR, TOSS, 31P‐COSY, 31P‐EXSY) showed that the additional tautomer [Co(CO)2(Hdppa‐κ2P)(Ph2P–N=P(H)Ph2‐κP)]+ ( 5 ′+) is present in solution. The tautomer equilibrium is slow in the NMR time scale. In contrast to the solid state only tetragonal pyramidal species of 5 are found in solution. At –90 °C there is slow exchange between the three diastereomeric species 5 a +– 5 c +. Compound 5 forms [Co(CO) · (Hdppa‐κ2P)2]BPh4 · THF ( 6 b · THF) in THF with NaBPh4 under CO‐Elimination. A X‐ray diffraction investigation shows that the cation 6 + consists of a slightly distorted trigonal‐bipyramidal co‐ordination polyeder. However, a distorted tetragonal‐pyramidal structure has been found for the cation 7 + of the related compound [Co(CO)(dppm)2][Co(CO)4] · 2 THF ( 7 · 2 THF; dppm = bis(diphenylphosphanyl)methane, Ph2PCH2PPh2). A comparison with the known [8] trigonal‐bipyramidal stereoisomer, ascertained for 7 + of the solvent‐free 7 , is described. In solutions of 6 a · 2 THF and 7 · 2 THF 13C{1H}‐ and 31P{1H}‐NMR spectra indicate an exchange of all CO and organophosphane molecules between cobalt(I) cation and cobalt(–I) anion. A concerted mechanism for the exchange process is discussed. CO elimination leads to discontinuance of the cyclic mechanism by forming binuclear substitution products such as the isolated Co2(CO)2 · (μ‐CO)2(μ‐dppm)2 · 0.83 THF ( 8 · 0.83 THF), which was characterized by spectroscopy and X‐ray analysis. For the dissolved [Co(CO)2CH3C(CH2PPh2)3][Co(CO)4] · 0.83 n‐pentane ( 9 a · 0.83 n‐pentane) no CO and triphos exchange processes between the cation and the anion are observed. Metathesis of 9 a · 0.83 n‐pentane with NaBPh4 yields [Co(CO)2CH3C(CH2PPh2)3]BPh4 ( 9 b ) which has been characterized by single‐crystal X‐ray analysis. The cation shows a small distorted tetragonal‐pyramidal structure.  相似文献   

11.
The dependence of the preferred microhydration sites of 4‐aminobenzonitrile (4ABN) on electronic excitation and ionization is determined through IR spectroscopy of its clusters with water (W) in a supersonic expansion and through quantum chemical calculations. IR spectra of neutral 4ABN and two isomers of its hydrogen‐bonded (H‐bonded) 4ABN–W complexes are obtained in the ground and first excited singlet states (S0, S1) through IR depletion spectroscopy associated with resonance‐enhanced multiphoton ionization. Spectral analysis reveals that electronic excitation does not change the H‐bonding motif of each isomer, that is, H2O binding either to the CN or the NH site of 4ABN, denoted as 4ABN–W(CN) and 4ABN–W(NH), respectively. The IR spectra of 4ABN+–W in the doublet cation ground electronic state (D0) are measured by generating them either in an electron ionization source (EI‐IR) or through resonant multiphoton ionization (REMPI‐IR). The EI‐IR spectrum shows only transitions of the most stable isomer of the cation, which is assigned to 4ABN+–W(NH). The REMPI‐IR spectrum obtained through isomer‐selective resonant photoionization of 4ABN–W(NH) is essentially the same as the EI‐IR spectrum. The REMPI‐IR spectrum obtained by ionizing 4ABN–W(CN) is also similar to that of the 4ABN+–W(NH) isomer, but differs from that calculated for 4ABN+–W(CN), indicating that the H2O ligand migrates from the CN to the NH site upon ionization with a yield of 100 %. The mechanism of this CN→NH site‐switching reaction is discussed in the light of the calculated potential energy surface and the role of intracluster vibrational energy redistribution.  相似文献   

12.
For the first time, the thermodynamics are described for the formation of double‐stranded DNA (ds‐DNA)–single‐walled carbon nanotube (SWNT) hybrids. This treatment is applied to the exchange reaction of sodium cholate (SC) molecules on SWNTs and the ds‐DNAs d(A)20–d(T)20 and nuclear factor (NF)‐κB decoy. UV/Vis/near‐IR spectroscopy with temperature variations was used for analyzing the exchange reaction on the SWNTs with four different chiralities: (n,m)=(8,3), (6,5), (7,5), and (8,6). Single‐stranded DNAs (ss‐DNAs), including d(A)20 and d(T)20, are also used for comparison. The d(A)20–d(T)20 shows a drastic change in its thermodynamic parameters around the melting temperature (Tm) of the DNA oligomer. No such Tm dependency was measured, owing to high Tm in the NF‐κB decoy DNA and no Tm in the ss‐DNA.  相似文献   

13.
Vibrational spectroscopy provides an important probe of the three‐dimensional structures of peptides. With increasing size, these IR spectra become very complex and to extract structural information, comparison with theoretical spectra is essential. Harmonic DFT calculations have become a common workhorse for predicting vibrational frequencies of small neutral and ionized gaseous peptides. 1 Although the far‐IR region (<500 cm?1) may contain a wealth of structural information, as recognized in condensed phase studies, 2 DFT often performs poorly in predicting the far‐IR spectra of peptides. Here, Born–Oppenheimer molecular dynamics (BOMD) is applied to predict the far‐IR signatures of two γ‐turn peptides. Combining experiments and simulations, far‐IR spectra can provide structural information on gas‐phase peptides superior to that extracted from mid‐IR and amide A features.  相似文献   

14.
We present the resonance‐enhanced multiphoton ionization, infrared‐ultraviolet hole burning (IR‐UV HB), and IR dip spectra of the trans‐acetanilide–methanol (AA–MeOH) cluster in the S0, S1, and cationic ground state (D0) in a supersonic jet. The IR‐UV HB spectra demonstrate the co‐existence of two isomers in S0,1, in which MeOH binds either to the NH or the CO site of the peptide linkage in AA, denoted as AA(NH)–MeOH and AA(CO)–MeOH. When AA(CO)–MeOH is selectively ionized, its IR spectrum in D0 is the same as that measured for AA+(NH)–MeOH. Thus, photoionization of AA(CO)–MeOH induces migration of MeOH from the CO to the NH site with 100% yield.  相似文献   

15.
Two new co‐crystals based on 1,2,4,5‐benzenetetracarboxylic acid, (H2BETC)(H4tpim)](NO3) ( 1 ) and [(H4BETC)0.5(H2BETC)0.5(HVB4)](H2O) ( 2 ) [H4BETC = 1,2,4,5‐benzenetetracarboxylic acid, Htpim = 2,4,5‐tri(4‐pyridyl)‐imidazole, and VB4 = adenine], were synthesized and characterized by elemental analyses, IR spectroscopy, single‐crystal X‐ray diffraction, and X‐ray powder diffraction analysis. Compounds 1 and 2 were further assembled to form 3D supramolecular frameworks with 1D channels by intermolecular C–H ··· O, O–H ··· O, and N–H ··· O hydrogen‐bonding interactions. The results reveal that the structural differences of 1 and 2 may be attributed to different molecular components. Moreover, the UV/Vis and luminescent spectra of ligands and corresponding compounds were briefly investigated.  相似文献   

16.
The study reports the synthesis of complexes Co(HL)Cl2 ( 1 ), Ni(HL)Cl2 ( 2 ), Cu(HL)Cl2 ( 3 ), and Zn(HL)3Cl2 ( 4 ) with the title ligand, 5‐(pyrazin‐2‐yl)‐1,2,4‐triazole‐5‐thione (HL), and their characterization by elemental analyses, ESI‐MS (m/z), FT‐IR and UV/Vis spectroscopy, as well as EPR in the case of the CuII complex. The comparative analysis of IR spectra of the metal ion complexes with HL and HL alone indicated that the metal ions in 1 , 2 , and 3 are chelated by two nitrogen atoms, N(4) of pyrazine and N(5) of triazole in the thiol tautomeric form, whereas the ZnII ion in 4 is coordinated by the non‐protonated N(2) nitrogen atom of triazole in the thione form. pH potentiometry and UV/Vis spectroscopy were used to examine CoII, NiII, and ZnII complexes in 10/90 (v/v) DMSO/water solution, whereas the CuII complex was examined in 40/60 (v/v) DMSO/water solution. Monodeprotonation of the thione triazole in solution enables the formation of the L:M = 1:1 species with CoII, NiII and ZnII, the 2:1 species with CoII and ZnII, and the 3:1 species with ZnII. A distorted tetrahedral arrangement of the CuII complex was suggested on the basis of EPR and Vis/NIR spectra.  相似文献   

17.
The molecular orientation of adsorbed molecules forming self‐assembled monolayers can be determined by combining vibrational sum‐frequency generation (SFG) measurements with quantum chemical calculations. Herein, we present a theoretical methodology used to simulate the SFG spectra for different combinations of polarizations. These simulations are based on calculations of the IR vectors and Raman tensors, which are obtained from density functional theory computations. The dependency of the SFG vibrational signature with respect to the molecular orientation is presented for the molecules p‐nitrothiophenol and 2,4‐dinitroaniline. It is found that a suitable choice of basis set as well as of exchange‐correlation (XC) functional is mandatory to correctly simulate the SFG intensities and consequently provide an accurate estimation of the adsorbed molecule orientation. Comparison with experimental data shows that calculations performed at the B3LYP/6‐311++G(d,p) level of approximation provide good agreement with experimental frequencies, and with IR and Raman intensities. In particular, it is demonstrated that polarization and diffuse functions are compulsory for reproducing the IR and Raman spectra, and consequently vibrational SFG spectra, of systems such as p‐nitrothiophenol. Moreover, the investigated XC functionals reveal their influence on the relative intensities, which show rather systematic variations with the amount of Hartree–Fock exchange. Finally, further aspects of the modeling are revealed by considering the frequency dependence of the Raman tensors.  相似文献   

18.
A method is presented that combines Carr–Purcell–Meiboom–Gill (CPMG) during acquisition with either selective or nonselective excitation to produce a considerable intensity enhancement and a simultaneous loss in chemical shift information. A range of parameters can theoretically be optimized very rapidly on the basis of the signal from the entire sample (hard excitation) or spectral subregion (soft excitation) and should prove useful for biological, environmental, and polymer samples that often exhibit highly dispersed and broad spectral profiles. To demonstrate the concept, we focus on the application of our method to T1 determination, specifically for the slowest relaxing components in a sample, which ultimately determines the optimal recycle delay in quantitative NMR. The traditional inversion recovery (IR) pulse program is combined with a CPMG sequence during acquisition. The slowest relaxing components are selected with a shaped pulse, and then, low‐power CPMG echoes are applied during acquisition with intervals shorter than chemical shift evolution (RCPMG) thus producing a single peak with an SNR commensurate with the sum of the signal integrals in the selected region. A traditional 13C IR experiment is compared with the selective 13C IR‐RCPMG sequence and yields the same T1 values for samples of lysozyme and riverine dissolved organic matter within error. For lysozyme, the RCPMG approach is ~70 times faster, and in the case of dissolved organic matter is over 600 times faster. This approach can be adapted for the optimization of a host of parameters where chemical shift information is not necessary, such as cross‐polarization/mixing times and pulse lengths. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The complex [VO(MPO)2] (MPO = deprotonated 2‐mercaptopyridine N‐oxide) was synthesized and characterized by IR spectroscopy. Its electrochemical behaviour was investigated by cyclic voltammetry in different organic solvents. The VIV/VV and VIV/VIII couples could be identified. The nature of the electroactive species is strongly dependent on the solvent. The results are discussed in terms of a reaction mechanism describing the characteristics of the electron transfer processes and the involved chemical reactions, and the stability of the complex in each solvent was also determined. The electronic spectra of the investigated solutions gave additional support to the proposed mechanisms.  相似文献   

20.
There is widespread interest in responsive polymers that show cloud point behavior, but little attention is paid to their solid state thermal properties. To manufacture products based on such polymers, it may be necessary to subject them to high temperatures; hence, it is important to investigate their thermal behavior. In this study, we characterized a family of poly(N‐isopropylacrylamide‐co‐hydroxymethylacrylamide) copolymers. Although poly(N‐isopropylacrylamide) shows very high thermal stability (up to 360 °C), introduction of hydroxy side chains leads to a significant reduction in stability and new degradation processes become apparent. Thermogravimetric analysis and fourier transform infrared spectroscopy (FT‐IR) indicate that the first degradation process involves a chemical dehydration step (110–240 °C), supported by the nonreversing heat flow response in modulated temperature differential scanning calorimetry. Water loss scales with the fraction of hydroxy monomer in the copolymer. Glass transition temperatures (Tg) are higher than the temperatures causing dehydration; hence, these values relate to newly‐formed copolymer structures produced by controlled heating under nitrogen. Fourier transform‐Raman (FT‐Raman) spectra suggest that this transition involves imine formation. The Tg increases as the fraction of hydroxy groups in the original copolymer increases. Further heating leads to degradation and mass loss, and more complex changes in the FT‐IR spectra, consistent with formation of unsaturated species. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号