首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evaluation of the acidity of proton‐responsive ligands such as protic N‐heterocyclic carbenes (NHCs) bearing an NH‐wingtip provides a key to understanding the metal–ligand cooperation in enzymatic and artificial catalysis. Here, we design a CNN pincer‐type ruthenium complex 2 bearing protic NHC and isoelectronic pyrazole units in a symmetrical skeleton, to compare their acidities and electron‐donating abilities. The synthesis is achieved by direct C?H metalation of 2‐(imidazol‐1‐yl)‐6‐(pyrazol‐3‐yl)pyridine with [RuCl2(PPh3)3]. 15N‐Labeling experiments confirm that deprotonation of 2 occurs first at the pyrazole side, indicating clearly that the protic pyrazole is more acidic than the NHC group. The electrochemical measurements as well as derivatization to carbonyl complexes demonstrate that the protic NHC is more electron‐donating than pyrazole in both protonated and deprotonated forms.  相似文献   

2.
A series of monomeric palladacycle complexes bearing n‐butyl‐substituted N‐heterocyclic carbenes, namely [Pd(NHC)X(dmba)] (dmba: dimethylbenzylamine and [Pd(NHC)X(ppy)]; NHC: 1‐n‐butyl‐3‐substituted benzylimidazol‐2‐ylidene; ppy: 2‐phenylpyridine), were prepared either by transmetallation from the corresponding silver carbene complexes or by the reaction of the corresponding acetate‐bridged palladacycle dimer with N‐heterocyclic carbene ligands in high yields. The palladium(II) complexes were characterized using elemental analyses, APCI‐MS, 1H NMR and 13C NMR spectroscopies. These complexes are efficient in the Suzuki–Miyaura coupling reaction between phenylboronic acid and aryl bromides.  相似文献   

3.
Based on 1‐amino‐4‐hydroxy‐triptycene, new saturated and unsaturated triptycene‐NHC (N‐heterocyclic carbene) ligands were synthesized from glyoxal‐derived diimines. The respective carbenes were converted into metal complexes [(NHC)MX] (M=Cu, Ag, Au; X=Cl, Br) and [(NHC)MCl(cod)] (M=Rh, Ir; cod=1,5‐cyclooctadiene) in good yields. The new azolium salts and metal complexes suffer from limited solubility in common organic solvents. Consequently, the introduction of solubilizing groups (such as 2‐ethylhexyl or 1‐hexyl by O‐alkylation) is essential to render the complexes soluble. The triptycene unit infers special steric properties onto the metal complexes that enable the steric shielding of selected areas close to the metal center. Next, chiral and meso‐triptycene based N‐heterocyclic carbene ligands were prepared. The key step in the synthesis of the chiral ligand is the Buchwald–Hartwig amination of 1‐bromo‐4‐butoxy‐triptycene with (1S,2S)‐1,2‐diphenyl‐1,2‐diaminoethane, followed by cyclization to the azolinium salt with HC(OEt)3. The analogous reaction with meso‐1,2‐diphenyl‐1,2‐diaminoethane provides the respective meso‐azolinium salt. Both the chiral and meso‐azolinium salts were converted into metal complexes including [(NHC)AuCl], [(NHC)RhCl(cod)], [(NHC)IrCl(cod)], and [(NHC)PdCl(allyl)]. An in situ prepared chiral copper complex was tested in the enantioselective borylation of α,β‐unsaturated esters and found to give an excellent enantiomeric ratio (er close to 90:10).  相似文献   

4.
A series of novel benzimidazolium bromides containing bulky 3,5‐di‐tert ‐butyl group were synthesized in high yields as N‐heterocyclic carbene (NHC) ligands. These NHC ligands were metallated with Ag2O under moderate conditions to give novel silver–NHC complexes. The structures of all compounds were characterized using 1H NMR, 13CNMR, infrared and elemental analysis techniques, which supported the proposed structures. The silver–NHC complexes were screened for their in vitro antimicrobial activities against the standard bacterial strains Enterococcus faecalis , Staphylococcus aureus , Escherichia coli and Pseudomonas aeruginosa and the fungal strains Candida albicans and C. tropicalis . The results showed that most of the silver–NHC complexes inhibited the growth of all bacterial strains and fungal strains and were found to display effective antimicrobial activity against different microorganisms.  相似文献   

5.
We report here the synthesis and catalytic evaluation in DNA alkylation of a series of water‐soluble copper complexes bearing N‐heterocyclic carbene (NHC) ligands. The NHC ligands were chosen to cover the gamut of commonly used scaffold variations, but in many cases, copper complexes could not be obtained or were unstable. Nevertheless, we identified several complexes that were both stable and catalytically active. Our studies provide guidance and starting scaffolds for any researchers interested in aqueous copper(I) catalysis. A key practical aspect of our findings is that azide‐bearing copper‐NHC complexes are excellent substrates for the azide‐alkyne cycloaddition, which allows late‐stage tailoring of the copper complexes.  相似文献   

6.
Four dinuclear N ‐heterocyclic carbene (NHC) palladium complexes were prepared by reaction of imidazolinium salts, PdCl2 and bridging ligands (piperazine and DABCO) in one pot or by direct cleavage of the chloro‐bridged dimeric compounds [Pd(μ ‐Cl)(Cl)(NHC)]2 with bridging ligands. All of the complexes were fully characterized using 1H NMR, 13C NMR, high‐resolution mass and infrared spectroscopies, elemental analysis and single‐crystal X‐ray diffraction. The catalytic activities of the obtained palladium catalysts towards Hiyama coupling of aryl chlorides with phenyltrimethoxysilane were investigated and the results showed that the dinuclear palladium complexes were considerably active for the coupling reaction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The origin of hydroxyl group tolerance in neutral and especially cationic molybdenum imido alkylidene N‐heterocyclic carbene (NHC) complexes has been investigated. A wide range of catalysts was prepared and tested. Most cationic complexes can be handled in air without difficulty and display an unprecedented stability towards water and alcohols. NHC complexes were successfully used with substrates containing the hydroxyl functionality in acyclic diene metathesis polymerization, homo‐, cross and ring‐opening cross metathesis reactions. The catalysts remain active even in 2‐PrOH and are applicable in ring‐opening metathesis polymerization and alkene homometathesis using alcohols as solvent. The use of weakly basic bidentate, hemilabile anionic ligands such as triflate or pentafluorobenzoate and weakly basic aromatic imido ligands in combination with a sterically demanding 1,3‐dimesitylimidazol‐2‐ylidene NHC ligand was found essential for reactive and yet robust catalysts.  相似文献   

8.
Enantiomerically pure iridium complexes with phosphino‐ and (phosphinooxy)‐substituted N‐heterocyclic carbene (NHC) ligands were synthesized. Investigation of their electronic properties showed a similar trans influence of the phosphino (or phosphinooxy) and the NHC units. The complexes were tested in iridium‐catalyzed hydrogenation. While low conversions were observed with unfunctionalized olefins, the catalysts proved to be suitable for hydrogenation of the α,β‐unsaturated ester 20 , allylic alcohol 21 , and imine 22 . The enantioselectivities were, however, moderate.  相似文献   

9.
Vinyl polymerized norbornene has some useful properties such as good mechanical strength, optical transparency and heat resistance. Several transition metal complexes have been described in the literature as active catalysts for the vinyl polymerization of norbornene. We now report the use of three types of nickel(II) complexes with N‐heterocyclic carbene (NHC) ligands in the catalytic vinyl polymerization of norbornene under a range of conditions. Specifically, two nickel complexes bearing a chelating bis(NHC) ligand, two nickel complexes bearing two chelating anionic N‐donor functionalized NHC ligands as well as one diiodidonickel(II) complex with two monodentate NHC ligands were tested. The solid‐state structure of bis(1,3‐dimethylimidazol‐2‐ylidene)diiodidonickel(II), as determined by X‐ray crystallography, is presented. The highest polymerization activity of 2.6 × 107 g (mol cat)?1 h?1 was observed using the latter nickel complex as catalyst, activated by methylaluminoxane. The norbornene polymers thus obtained are of high molecular weight but with rather low polydispersity. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The synthesis, characterisation and biological activity of water‐soluble Ag(I)‐NHC complexes, general formula Na[(NHC)AgCl] where NHC is a sulfonated and sterically hindered N‐heterocyclic carbene, is reported. The Ag‐NHC complexes (2a–e) were synthesised by reacting the corresponding sulfonated NHC ligands with Ag2O in the presence of NaCl or NaBr in methanol/water (1:1) solution. Synthesised silver (I)‐N‐heterocyclic carbene complexes have been characterised by NMR, micro‐analysis and HRMS spectroscopic methods. The IC50 values of these complexes were determined by a proliferation BrdU enzyme‐linked immunosorbent assay (ELISA) against HeLa (human cervix carcinoma), HT29 (human adenocarcinoma) and L929 (mouse fibroblast) cell lines. These complexes have been highlighted as promising and original platforms for building new types of metalodrug. All new water‐soluble Ag(I) complexes demonstrated remarkable cytotoxic activity against HeLa, HT29 and L929 cell lines.  相似文献   

11.
Two classes of pincer‐type PtII complexes containing tridentate N‐donor ligands ( 1 – 8 ) or C‐deprotonated N^C^N ligands derived from 1,3‐di(2‐pyridyl)benzene ( 10 – 13 ) and auxiliary N‐heterocyclic carbene (NHC) ligand were synthesized. [Pt(trpy)(NHC)]2+ complexes 1 – 5 display green phosphorescence in CH2Cl2 (Φ: 1.1–5.3 %; τ: 0.3–1.0 μs) at room temperature. Moderate‐to‐intense emissions are observed for 1 – 7 in glassy solutions at 77 K and for 1 – 6 in the solid state. The [Pt(N^C^N)(NHC)]+ complexes 10 – 13 display strong green phosphorescence with quantum yields up to 65 % in CHCl3. The reactions of 1 with a wide variety of anions were examined in various solvents. The tridentate N‐donor ligand of 1 undergoes displacement reaction with CN? in protic solvents. Similar displacement of the N^C^N ligand by CN? has been observed for 10 , leading to a luminescence “switch‐off” response. The water‐soluble 7 containing anthracenyl‐functionalized NHC ligand acts as a light “switch‐on” sensor for the detection of CN? ion with high selectivity. The in vitro cytotoxicity of the PtII complexes towards HeLa cells has been evaluated. Complex 12 showed high cytotoxicity with IC50 value of 0.46 μM , whereas 1 – 4 and 6 – 8 are less cytotoxic. The cellular localization of the strongly luminescent complex 12 traced by using emission microscopy revealed that it mainly localizes in the cytoplasmic structures rather than in the nucleus. This complex can induce mitochondria dysfunction and subsequent cell death.  相似文献   

12.
1,3‐Diarylsubstituted imidazolinium salts, (NHC‐H)Cl, 3, containing hydrogen or alkyl groups at the 4,5‐positions of the imidazolidine ring, served as precursors to rhodium(I) complexes [RhCl(NHC)COD], 4, which were converted into cis‐[RhCl(NHC)(CO)2] complexes, 5. All compounds prepared were characterized by elemental analyses, 1H NMR and 13C NMR. The relative σ‐donor/π‐acceptor strength of the NHC ligands was determined by means of IR spectroscopy of 5. The ability of NHCs in 4 to enchance activity was explored in the 1,2‐addition of phenylboronic acid to aldehydes. A good correlation was observed between catalytic activity and the electron‐donating power of the NHC ligands. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
AuIII complexes with N‐heterocyclic carbene (NHC) ligands have shown remarkable potential as anticancer agents, yet their fate in vivo has not been thoroughly examined and understood. Reported herein is the synthesis of new AuIII‐NHC complexes by direct oxidation with radioactive [124I]I2 as a valuable strategy to monitor the in vivo biodistribution of this class of compounds using positron emission tomography (PET). While in vitro analyses provide direct evidence for the importance of AuIII‐to‐AuI reduction to achieve full anticancer activity, in vivo studies reveal that a fraction of the AuIII‐NHC prodrug is not immediately reduced after administration but able to reach the major organs before metabolic activation.  相似文献   

14.
Reaction of the pentamethylcyclopentadienyl rhodium iodide dimer [Cp*RhI2]2 with 1,1′‐diphenyl‐3,3′‐methylenediimidazolium diiodide in non‐alcohol solvents, in the presence of base, led to the formation of bis‐carbene complex [Cp*Rh(bis‐NHC)I]I (bis‐NHC=1,1′‐diphenyl‐4,4′‐methylenediimidazoline‐5,5′‐diylidene). In contrast, when employing alcohols as the solvent in the same reaction, cleavage of a methylene C?N bond is observed, affording ether‐functionalized (cyclometalated) carbene ligands coordinated to the metal center and the concomitant formation of complexes with a coordinated imidazole ligand. Studies employing other 1,1′‐diimidazolium salts indicate that the cyclometalation step is a prerequisite for the activation/scission of the C?N bond and, based on additional experimental data, a SN2 mechanism for the reaction is tentatively proposed.  相似文献   

15.
A general synthetic route was used to prepare 15 new N‐heterocyclic carbene (NHC)–AgI complexes bearing anionic carboxylate ligands [Ag(NHC)(O2CR)], including a homologous series of complexes of sterically flexible ITent ligands, which permit a systematic spectroscopic and theoretical study of the structural and electronic features of these compounds. The complexes displayed a significant ligand‐accelerated effect in the intramolecular cyclisation of propargylic amides to oxazolidines. The substrate scope is highly complementary to that previously achieved by NHC–Au and pyridyl–AgI complexes.  相似文献   

16.
Controlling the synthesis of stable metal nanoparticles in water is a current challenge in nanochemistry. The strategy presented herein uses sulfonated N‐heterocyclic carbene (NHC) ligands to stabilize platinum nanoparticles (PtNPs) in water, under air, for an indefinite time period. The particles were prepared by thermal decomposition of a preformed molecular Pt complex containing the NHC ligand and were then purified by dialysis and characterized by TEM, high‐resolution TEM, and spectroscopic techniques. Solid‐state NMR studies showed coordination of the carbene ligands to the nanoparticle surface and allowed the determination of a 13C–195Pt coupling constant for the first time in a nanosystem (940 Hz). Additionally, in one case a novel structure was formed in which platinum(II) NHC complexes form a second coordination sphere around the nanoparticle.  相似文献   

17.
NHC adducts of the stannylene Trip2Sn (Trip=2,4,6‐triisopropylphenyl) were reacted with zero‐valent Ni, Pd, and Pt precursor complexes to cleanly yield the respective metal complexes featuring a three‐membered ring moiety Sn‐Sn‐M along with carbene transfer onto the metal and complete substitution of the starting ligands. Thus the easily accessible NHC adducts to stannylenes are shown to be valuable precursors for transition‐metal complexes with an unexpected Sn? Sn bond. The complexes have been studied by X‐ray diffraction and NMR spectroscopy as well as DFT calculations. The compounds featuring the structural motif of a distannametallacycle comprised of a [(NHC)2M0] fragment and Sn2Trip4 represent rare higher congeners of the well‐known olefin complexes. DFT calculations indicate the presence of a π‐type Sn–Sn interaction in these first examples for acyclic distannenes symmetrically coordinating to a zero‐valent transition metal.  相似文献   

18.
We provide an overview on the state‐of‐the‐art in transition‐metal complexes formed with water‐soluble NHC ligands. Paths to introducing water solubility by ligand design are elucidated and some general properties of water‐soluble NHC complexes are highlighted. The enhanced hydrophilicity of water‐soluble catalysts offers advantages in applications. While studies based on C? C coupling reactions still dominate the field, recent reports show water‐soluble NHC complexes can be applied in metathesis and hydrogenation reactions and turn out to be among the best performing catalysts known. Nevertheless, wide areas of this young field remain to be investigated, offering great potential for future research.  相似文献   

19.
Here we describe the fusion of two families of unusual carbon‐containing molecules that readily disregard the tendency of carbon to form four chemical bonds, namely N‐heterocyclic carbenes (NHCs) and carborane anions. Deprotonation of an anionic imidazolium salt with lithium diisopropylamide at room temperature leads to a mixture of lithium complexes of C‐2 and C‐5 dianionic NHC constitutional isomers as well as a trianionic (C‐2, C‐5) adduct. Judicious choice of the base and reaction conditions allows the selective formation of all three stable polyanionic carbenes. In solution, the so‐called abnormal C‐5 NHC lithium complex slowly isomerizes to the normal C‐2 NHC, and the process can be proton‐catalyzed by the addition of the anionic imidazolium salt. These results indicate that the combination of two unusual forms of carbon atoms can lead to unexpected chemical behavior, and that this strategy paves the way for the development of a broad new generation of NHC ligands for catalysis.  相似文献   

20.
The molecular structure of the benzimidazol‐2‐ylidene–PdCl2–pyridine‐type PEPPSI (pyridine‐enhanced precatalyst, preparation, stabilization and initiation) complex {1,3‐bis[2‐(diisopropylamino)ethyl]benzimidazol‐2‐ylidene‐κC2}dichlorido(pyridine‐κN)palladium(II), [PdCl2(C5H5N)(C23H40N4)], has been characterized by elemental analysis, IR and NMR spectroscopy, and natural bond orbital (NBO) and charge decomposition analysis (CDA). Cambridge Structural Database (CSD) searches were used to understand the structural characteristics of the PEPPSI complexes in comparison with the usual N‐heterocyclic carbene (NHC) complexes. The presence of weak C—H…Cl‐type hydrogen‐bond and π–π stacking interactions between benzene rings were verified using NCI plots and Hirshfeld surface analysis. The preferred method in the CDA of PEPPSI complexes is to separate their geometries into only two fragments, i.e. the bulky NHC ligand and the remaining fragment. In this study, the geometry of the PEPPSI complex is separated into five fragments, namely benzimidazol‐2‐ylidene (Bimy), two chlorides, pyridine (Py) and the PdII ion. Thus, the individual roles of the Pd atom and the Py ligand in the donation and back‐donation mechanisms have been clearly revealed. The NHC ligand in the PEPPSI complex in this study acts as a strong σ‐donor with a considerable amount of π‐back‐donation from Pd to Ccarbene. The electron‐poor character of PdII is supported by π‐back‐donation from the Pd centre and the weakness of the Pd—N(Py) bond. According to CSD searches, Bimy ligands in PEPPSI complexes have a stronger σ‐donating ability than imidazol‐2‐ylidene ligands in PEPPSI complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号