首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
《中国化学会会志》2017,64(4):360-368
The ultraviolet (UV ) absorption spectrum of the simplest deuterated Criegee intermediate CD2OO has been measured and compared with that of CH2OO . While the UV spectra of CH2OO and CD2OO are similar in the overall shape, distinctive oscillatory structures at the long wavelength side of the absorption band show clear effect of isotopic substitution. The average spacing between the vibrational peaks decreases from 606 cm−1 for CH2OO to 528 cm−1 for CD2OO . This large isotope effect cannot be explained by one‐dimensional model along the dissociative O−O bond. Instead, vibrational modes involving motions of the H‐atoms are expected to be responsible for the observed oscillatory structure. This isotope effect offers a stringent test for theoretical investigations on the absorption spectrum and excited‐state dynamics of the simplest Criegee intermediate.  相似文献   

2.
Criegee intermediates have implications as key intermediates in atmospheric, organic, and enzymatic reactions. However, their chemistry in aqueous environments is relatively unexplored. Herein, Born–Oppenheimer molecular dynamics (BOMD) simulations examine the dynamic behavior of syn ‐ and anti ‐CH3CHOO at the air–water interface. They show that unlike the simplest Criegee intermediate (CH2OO), both syn ‐ and anti ‐CH3CHOO remain inert towards reaction with water. The unexpected high stability of C2 Criegee intermediates is due to the presence of a hydrophobic methyl substituent on the Criegee carbon that lowers the proton transfer ability and inhibits the formation of a pre‐reaction complex for the Criegee–water reaction. The simulation of the larger Criegee intermediates, (CH3)2COO, syn ‐ and anti ‐CH2C(CH3)C(H)OO on the water droplet surface suggests that strongly hydrophobic substituents determine the reactivity of Criegee intermediates at the air–water interface.  相似文献   

3.
CH2OO, the simplest Criegee intermediate, and ozone are isoelectronic. They both play very important roles in atmospheric chemistry. Whilst extensive experimental studies have been made on ozone, there were no direct gas‐phase studies on CH2OO until very recently when its photoionization spectrum was recorded and kinetics studies were made of some reactions of CH2OO with a number of molecules of atmospheric importance, using photoionization mass spectrometry to monitor CH2OO. In order to encourage more direct studies on CH2OO and other Criegee intermediates, the electronic and photoelectron spectra of CH2OO have been simulated using high level electronic structure calculations and Franck–Condon factor calculations, and the results are presented here. Adiabatic and vertical excitation energies of CH2OO were calculated with TDDFT, EOM‐CCSD, and CASSCF methods. Also, DFT, QCISD and CASSCF calculations were performed on neutral and low‐lying ionic states, with single energy calculations being carried out at higher levels to obtain more reliable ionization energies. The results show that the most intense band in the electronic spectrum of CH2OO corresponds to the ${{\rm{\tilde B}}}$ 1A′ ← ${{\rm{\tilde X}}}$ 1A′ absorption. It is a broad band in the region 250–450 nm showing extensive structure in vibrational modes involving O–O stretching and C‐O‐O bending. Evidence is presented to show that the electronic absorption spectrum of CH2OO has probably been recorded in earlier work, albeit at low resolution. We suggest that CH2OO was prepared in this earlier work from the reaction of CH2I with O2 and that the assignment of the observed spectrum solely to CH2IOO is incorrect. The low ionization energy region of the photoelectron spectrum of CH2OO consists of two overlapping vibrationally structured bands corresponding to one‐electron ionizations from the highest two occupied molecular orbitals of the neutral molecule. In each case, the adiabatic component is the most intense and the adiabatic ionization energies of these bands are expected to be very close, at 9.971 and 9.974 eV at the highest level of theory used.  相似文献   

4.
Criegee intermediates are thought to play roles in atmospheric chemistry, including OH radical formation, oxidation of SO2, NO2, etc. CH2OO is the simplest Criegee intermediate, of which the reactivity has been a hot topic. Here we investigated the kinetics of CH2OO reaction with dimethyl sulfoxide (DMSO) under 278–349 K and 10–150 Torr. DMSO is an important species formed in the oxidation of dimethyl sulfide in the biogenic sulfur cycle. The concentration of CH2OO was monitored in real-time via its mid-infrared absorption band at about 1,286 cm−1 (Q branch of the ν4 band) with a high-resolution quantum cascade laser spectrometer. The 298 K bimolecular rate coefficient was determined to be k298 = (2.3 ± 0.3) × 10−12 cm3/s at 30 Torr with an Arrhenius activation energy of −3.9 ± 0.2 kcal/mol and a weak pressure dependence for pressures higher than 30 Torr (k298 = (2.8 ± 0.3) × 10−12 cm3/s at 100 Torr). The reaction is speculated to undergo a five-membered ring intermediate, analogous to that of CH2OO with SO2. The negative activation energy indicates that the rate-determining transition state is submerged. The magnitude of the reaction rate coefficient lies in between those of CH2OO reactions with (CH3)2CO and with SO2.  相似文献   

5.
The reaction mechanism of the reaction of the Criegee intermediate CH2OO with NO2 was investigated using quantum chemical and theoretical kinetic methodologies. The reaction shows a rich chemistry, though the number of channels that effectively contribute at room temperature is limited. The theoretical characterization of the entrance transition states was hampered by strongly multireference wave functions. The predicted rate coefficient k (298 K) = 4.4 × 10−12 cm3 molecule−1 s−1 thus carries a large uncertainty, but is in agreement with literature data. We find that the CH2OO + NO2 reaction reacts by adduct formation, near‐exclusively forming nitro‐peroxy radicals, OOCH2NO2. These will react as other alkylperoxy radicals in the atmosphere, ultimately generating CH2O and regenerating NO2 in most reaction conditions. The product predictions contrast with earlier experimental work showing NO3 formation, but support other observations of adduct products.  相似文献   

6.
The rate coefficients for gas‐phase reaction of trifluoroacetic acid (TFA) with two Criegee intermediates, formaldehyde oxide and acetone oxide, decrease with increasing temperature in the range 240–340 K. The rate coefficients k(CH2OO + CF3COOH)=(3.4±0.3)×10−10 cm3 s−1 and k((CH3)2COO + CF3COOH)=(6.1±0.2)×10−10 cm3 s−1 at 294 K exceed estimates for collision‐limited values, suggesting rate enhancement by capture mechanisms because of the large permanent dipole moments of the two reactants. The observed temperature dependence is attributed to competitive stabilization of a pre‐reactive complex. Fits to a model incorporating this complex formation give k [cm3 s−1]=(3.8±2.6)×10−18 T2 exp((1620±180)/T) + 2.5×10−10 and k [cm3 s−1]=(4.9±4.1)×10−18 T2 exp((1620±230)/T) + 5.2×10−10 for the CH2OO + CF3COOH and (CH3)2COO + CF3COOH reactions, respectively. The consequences are explored for removal of TFA from the atmosphere by reaction with biogenic Criegee intermediates.  相似文献   

7.
Carbenes are reactive molecules of the form R1 C̈ R2 that play a role in topics ranging from organic synthesis to gas‐phase oxidation chemistry. We report the first experimental structure determination of dihydroxycarbene (HO C̈ OH), one of the smallest stable singlet carbenes, using a combination of microwave rotational spectroscopy and high‐level coupled‐cluster calculations. The semi‐experimental equilibrium structure derived from five isotopic variants of HO C̈ OH contains two very short CO single bonds (ca. 1.32 Å). Detection of HO C̈ OH in the gas phase firmly establishes that it is stable to isomerization, yet it has been underrepresented in discussions of the CH2O2 chemical system and its atmospherically relevant isomers: formic acid and the Criegee intermediate CH2OO.  相似文献   

8.
Carbenes are reactive molecules of the form R1? C?? R2 that play a role in topics ranging from organic synthesis to gas‐phase oxidation chemistry. We report the first experimental structure determination of dihydroxycarbene (HO? C?? OH), one of the smallest stable singlet carbenes, using a combination of microwave rotational spectroscopy and high‐level coupled‐cluster calculations. The semi‐experimental equilibrium structure derived from five isotopic variants of HO? C?? OH contains two very short CO single bonds (ca. 1.32 Å). Detection of HO? C?? OH in the gas phase firmly establishes that it is stable to isomerization, yet it has been underrepresented in discussions of the CH2O2 chemical system and its atmospherically relevant isomers: formic acid and the Criegee intermediate CH2OO.  相似文献   

9.
HPLC along with FT-IR technique was used to study the formation of organic peroxides in the Cl2-ethane-air photoreaction system. Ethyl hydroperoxide (CH3CH21OOH, EHP) and peroxyacetic acid ( CH3C(O)OOH, PAA) were conformed to be the peroxide product in the reaction system. In addition, methyl hydroperoxide (CH3OOH, hydroxymethyl hydroperoxide (HOCH2OOH, HMHP) and two unidentified organic peroxides were detected for the first time. EHP and were the dominant peroxide products. The identification of HMHP showed that Criegee biradical CH2OO may be formed as an intermediate in the oxidation of ethane. Simulation results showed that photooxidation of ethane may make substantial contribution to source of organic peroxides in the atmosphere.  相似文献   

10.
HPLC along with FT-IR technique was used to study the formation of organic peroxides in the Cl2-ethane-air photoreaction system. Ethyl hydroperoxide (CH3CH21OOH, EHP) and peroxyacetic acid ( CH3C(O)OOH, PAA) were conformed to be the peroxide product in the reaction system. In addition, methyl hydroperoxide (CH3OOH, hydroxymethyl hydroperoxide (HOCH2OOH, HMHP) and two unidentified organic peroxides were detected for the first time. EHP and were the dominant peroxide products. The identification of HMHP showed that Criegee biradical CH2OO may be formed as an intermediate in the oxidation of ethane. Simulation results showed that photooxidation of ethane may make substantial contribution to source of organic peroxides in the atmosphere.  相似文献   

11.
The rate coefficients of the gas‐phase reactions CH2OO + CH3COCH3 and CH2OO + CH3CHO have been experimentally determined from 298–500 K and 4–50 Torr using pulsed laser photolysis with multiple‐pass UV absorption at 375 nm, and products were detected using photoionization mass spectrometry at 10.5 eV. The CH2OO + CH3CHO reaction's rate coefficient is ~4 times faster over the temperature 298–500 K range studied here. Both reactions have negative temperature dependence. The T dependence of both reactions was captured in simple Arrhenius expressions: The rate of the reactions of CH2OO with carbonyl compounds at room temperature is two orders of magnitude higher than that reported previously for the reaction with alkenes, but the A factors are of the same order of magnitude. Theoretical analysis of the entrance channel reveals that the inner 1,3‐cycloaddition transition state is rate limiting at normal temperatures. Predicted rate‐coefficients (RCCSD(T)‐F12a/cc‐pVTZ‐F12//B3LYP/MG3S level of theory) in the low‐pressure limit accurately reproduce the experimentally observed temperature dependence. The calculations only qualitatively reproduce the A factors and the relative reactivity between CH3CHO and CH3COCH3. The rate coefficients are weakly pressure dependent, within the uncertainties of the current measurements. The predicted major products are not detectable with our photoionization source, but heavier species yielding ions with masses m/z = 104 and 89 are observed as products from the reaction of CH2OO with CH3COCH3. The yield of m/z = 89 exhibits positive pressure dependence that appears to have already reached a high‐pressure limit by 25 Torr.  相似文献   

12.
Rate coefficients are directly determined for the reactions of the Criegee intermediates (CI) CH2OO and CH3CHOO with the two simplest carboxylic acids, formic acid (HCOOH) and acetic acid (CH3COOH), employing two complementary techniques: multiplexed photoionization mass spectrometry and cavity‐enhanced broadband ultraviolet absorption spectroscopy. The measured rate coefficients are in excess of 1×10?10 cm3 s?1, several orders of magnitude larger than those suggested from many previous alkene ozonolysis experiments and assumed in atmospheric modeling studies. These results suggest that the reaction with carboxylic acids is a substantially more important loss process for CIs than is presently assumed. Implementing these rate coefficients in global atmospheric models shows that reactions between CI and organic acids make a substantial contribution to removal of these acids in terrestrial equatorial areas and in other regions where high CI concentrations occur such as high northern latitudes, and implies that sources of acids in these areas are larger than previously recognized.  相似文献   

13.
Criegee intermediates (CIs) are a class of reactive radicals that are thought to play a key role in atmospheric chemistry through reactions with trace species that can lead to aerosol particle formation. Recent work has suggested that water vapor is likely to be the dominant sink for some CIs, although reactions with trace species that are sufficiently rapid can be locally competitive. Herein, we use broadband transient absorption spectroscopy to measure rate constants for the reactions of the simplest CI, CH2OO, with two inorganic acids, HCl and HNO3, both of which are present in polluted urban atmospheres. Both reactions are fast; at 295 K, the reactions of CH2OO with HCl and HNO3 have rate constants of 4.6×10?11 cm3 s?1 and 5.4×10?10 cm3 s?1, respectively. Complementary quantum‐chemical calculations show that these reactions form substituted hydroperoxides with no energy barrier. The results suggest that reactions of CIs with HNO3 in particular are likely to be competitive with those with water vapor in polluted urban areas under conditions of modest relative humidity.  相似文献   

14.
The rate coefficients for gas-phase reaction of trifluoroacetic acid (TFA) with two Criegee intermediates, formaldehyde oxide and acetone oxide, decrease with increasing temperature in the range 240–340 K. The rate coefficients k(CH2OO + CF3COOH)=(3.4±0.3)×10−10 cm3 s−1 and k((CH3)2COO + CF3COOH)=(6.1±0.2)×10−10 cm3 s−1 at 294 K exceed estimates for collision-limited values, suggesting rate enhancement by capture mechanisms because of the large permanent dipole moments of the two reactants. The observed temperature dependence is attributed to competitive stabilization of a pre-reactive complex. Fits to a model incorporating this complex formation give k [cm3 s−1]=(3.8±2.6)×10−18 T2 exp((1620±180)/T) + 2.5×10−10 and k [cm3 s−1]=(4.9±4.1)×10−18 T2 exp((1620±230)/T) + 5.2×10−10 for the CH2OO + CF3COOH and (CH3)2COO + CF3COOH reactions, respectively. The consequences are explored for removal of TFA from the atmosphere by reaction with biogenic Criegee intermediates.  相似文献   

15.
The formation of organic peroxides in the Cl-atom-initiated photooxidation of CH4 in O2-N2 mixtures at 101 325 Pa and 298 K was studied with HPLC and FT-IR methods. Four peroxidic products were detected, which were H2O2, hydroxymethyl hydroperoxide (HOCH2OOH; HMHP), methyl peroxide (CH300H; MHP) and dimethyl peroxide (CH300CH3). A chromatogram peak at retention time of 8.08 min was assigned tentatively to peroxyformic acid (HC(O)OOH). The identification of HMHP in the reaction system showed that one of the reaction paths for the self-reaction of CH300. led to producing Criegee intermediate CH2OO. The formation mechanism of organic peroxide in the photooxidation of CH4 is more complicated than it was assumed before. Photooxidation of CH4 is probably an important source of organic peroxides in the troposphere. Project supported by the State Scientific and Technological Commission of China (Grant No. E96-05)  相似文献   

16.
Interest in Criegee intermediates (CIs), often termed carbonyl oxides, and their role in tropospheric chemistry has grown massively since the demonstration of laboratory-based routes to their formation and characterization in the gas phase. This article reviews current knowledge regarding the electronic spectroscopy of atmospherically relevant CIs like CH2OO, CH3CHOO, (CH3)2COO and larger CIs like methyl vinyl ketone oxide and methacrolein oxide that are formed in the ozonolysis of isoprene, and of selected conjugated carbene-derived CIs of interest in the synthetic chemistry community. Of the aforementioned atmospherically relevant CIs, all except CH2OO and (CH3)2COO exist in different conformers which, under tropospheric conditions, can display strikingly different thermal loss rates via unimolecular and bimolecular processes. Calculated photolysis rates based on their absorption properties suggest that solar photolysis will rarely be a significant contributor to the total loss rate for any CI under tropospheric conditions. Nonetheless, there is ever-growing interest in the absorption cross sections and primary photochemistry of CIs following excitation to the strongly absorbing 1ππ* state, and how this varies with CI, with conformer and with excitation wavelength. The later part of this review surveys the photochemical data reported to date, including a range of studies that demonstrate prompt photo-induced fission of the terminal O–O bond, and speculates about possible alternate decay processes that could occur following non-adiabatic coupling to, and dissociation from, highly internally excited levels of the electronic ground state of a CI.  相似文献   

17.
Levels of the stabilized Criegee Intermediate (sCI), produced via the ozonolysis of unsaturated volatile organic compounds (VOCs), were estimated at two London urban sites (Marylebone Road and Eltham) and one rural site (Harwell) in the UK over the period of 1998–2012. The steady‐state approximation was applied to data obtained from the NETCEN (National Environmental Technology Centre) database, and the levels of annual average sCI were estimated to be in the range of 30–3000 molecules cm−3 for UK sites. A consistent diurnal cycle of sCI concentration is estimated for the UK sites with increasing levels during daylight hours, peaking just after midday. The seasonal pattern of sCI shows higher levels in spring with peaks around May due to the higher levels of O3. The ozone weekend effect resulted in higher sCI in UK urban areas during weekend. The sCI data were modeled using the information provided by the Air Quality Improvement Research Program (AQIRP) and found that the modeled production was five‐ to six‐fold higher than our estimated data, and therefore the estimated sCI concentrations in this study are thought to be lower estimates only. Compared with nighttime, 1.3‐ to 1.8‐fold higher sCI exists under daytime conditions. Using the levels of sCI estimated at Marylebone Road, globally the oxidation rates of NO2 + sCI (22.4 Gg/yr) and SO2 + sCI (37.6 Gg/yr) in urban areas can increase their effect in the troposphere and potentially further alter the oxidizing capacity of the troposphere. Further investigations of modeled sCI show that CH3CHOO (64%) and CH2OO (13%) are dominant among all contributing sCI at the UK sites.  相似文献   

18.
A direct ab initio dynamics method is used to investigate the hydrogen‐abstraction reaction CH3CHF2+Cl. One transition state is located for α‐H abstraction, and two are identified for β‐H abstraction. The potential‐energy surface (PES) is obtained at the G3(MP2)//MP2/6‐311G(d, p) level. Furthermore, the rate constants of the three channels are evaluated by using canonical variational transition‐state theory (CVT) with small‐curvature tunneling (SCT) contributions over a wide temperature range of 200–2500 K. The dynamic calculations show that the reaction proceeds mainly by α‐H abstraction over the whole temperature range. The calculated rate constants and branching ratios are both in good agreement with the available experimental values.  相似文献   

19.
Isoprene is the most abundant nonmethane volatile organic compound emitted into the troposphere by terrestrial vegetation. Reaction with ozone represents an important isoprene removal process from the troposphere and is a well-known source of Criegee intermediates (CIs), which are reactive carbonyl oxides. Three CIs, formaldehyde oxide (CH2OO), methyl vinyl ketone oxide (MVK-oxide) and methacrolein oxide (MACR-oxide) are formed during isoprene ozonolysis. All three CIs contain strongly absorbing ππ* states, electronic excitation, which leads to dissociation to form aldehyde/ketone + oxygen products. Here, we compare the excited state chemistry of CH2OO, MVK-oxide and MACR-oxide in order to ascertain how increasing molecular complexity affects their photodynamics. In CH2OO, vertical excitation to the S2 state leads to prompt O-O bond fission with a unity quantum yield. Branching into both the O (1D) + H2CO (S0) and O (3P) + H2CO (T1) product channels is predicted, with 80% of trajectories dissociating to form the former product pair. Analogous vertical excitation of the lowest energy conformers of MVK-oxide and MACR-oxide also undergoes O-O bond fission to form O + MVK/MACR products—albeit with a nonunity quantum yield. In the latter case, ca. 10% and 25% of trajectories remain as the parent MVK-oxide and MACR-oxide molecules, respectively. Additionally, at most only 5% of the dissociating trajectories form O (3P) + MVK/MACR (T1) products, with a greater fraction forming O (1D) + MVK/MACR (S0) products (cf. CH2OO). This latter observation coupled with the greater fraction of undissociated trajectories aligns with the bathochromic shift in the electronic absorption of the MACR-oxide and MVK-oxide (cf. CH2OO). We discuss the implications of the results in a broader context, including those that are relevant to the atmosphere.  相似文献   

20.
We studied photoinduced reactions of diiodomethane (CH2I2) upon excitation at 268 nm in acetonitrile and hexane by subpicosecond–nanosecond transient absorption spectroscopy. The transient spectra involve two absorption bands centered at around 400 (intense) and 540 nm (weak). The transients probed over the range 340–740 nm show common time profiles consisting of a fast rise (<200 fs), a fast decay (≈500 fs), and a slow rise. The two fast components were independent of solute concentration, whereas the slow rise became faster (7–50 ps) when the concentration in both solutions was increased. We assigned the fast components to the generation of a CH2I radical by direct dissociation of the photoexcited CH2I2 and its disappearance by subsequent primary geminate recombination. The concentration‐dependent slow rise produced the absorption bands centered at 400 and 540 nm. The former consists of different time‐dependent bands at 385 and 430 nm. The band near 430 nm grew first and was assigned to a charge‐transfer (CT) complex, CH2I2δ+???Iδ?, formed by a photofragment I atom and the solute CH2I2 molecule. The CT complex is followed by full electron transfer, which then develops the band of the ion pair CH2I2+???I? at 385 nm on the picosecond timescale. On the nanosecond scale, I3? was generated after decay of the ion pair. The reaction scheme and kinetics were elucidated by the time‐resolved absorption spectra and the reaction rate equations. We ascribed concentration‐dependent dynamics to the CT‐complex formation in pre‐existing aggregates of CH2I2 and analyzed how solutes are aggregated at a given bulk concentration by evaluating a relative local concentration. Whereas the local concentration in hexane monotonically increased as a function of the bulk concentration, that in acetonitrile gradually became saturated. The number of CH2I2 molecules that can participate in CT‐complex formation has an upper limit that depends on the size of aggregation or spatial restriction in the neighboring region of the initially photoexcited CH2I2. Such conditions were achieved at lower concentrations in acetonitrile than in hexane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号