首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanosheet compounds Pd11(SiiPr)2(SiiPr2)4(CNtBu)10 ( 1 ) and Pd11(SiiPr)2(SiiPr2)4(CNMes)10 ( 2 ), containing two Pd7(SiiPr)(SiiPr2)2(CNR)4 plates (R=tBu or Mes) connected with three common Pd atoms, were investigated with DFT method. All Pd atoms are somewhat positively charged and the electron density is accumulated between the Pd and Si atoms, indicating that a charge transfer (CT) occurs from the Pd to the Si atoms of the SiMe2 and SiMe groups. Negative regions of the Laplacian of the electron density were found between the Pd and Si atoms. A model of a seven‐coordinated Si species, that is, Pd5(Pd?SiMe), is predicted to be a stable pentagonal bipyramidal molecule. Five Pd atoms in the equatorial plane form bonding overlaps with two 3p orbitals of the Si atom. This is a new type of hypervalency. The Ge analogues have geometry and an electronic structure similar to those of the Si compounds. But their formation energies are smaller than those of the Si analogues. The use of the element Si is crucial to synthesize these nanoplate compounds.  相似文献   

2.
Bis(acetylacetonate)alumo‐oxo‐tetraphenyldisiloxane‐metal(II) dihydrates [(acac)2Al(O–SiPh2–O–SiPh2–O)]2M(H2O)2 (M = Mg, Fe, Co, Ni) were obtained from the corresponding acetyl‐acetonate‐dihydrates (acac)2M(H2O)2 by reaction with the alumosiloxane [O–Ph2Si–O–SiPh2–O]4Al4(OH)4. These new compounds display two acac ligands at the aluminum atoms as well as disilatrioxy chains linking the two aluminum atoms forming a (Al–O–Si–O–Si–O)2 cycle (X‐ray structure analyses). Within this cycle the divalent metal ions M2+, to which two water molecules in trans positions are linked, are installed in almost planar MO4 coordination spheres. Using water free (acac)2Ni a different product forms: both reactants combine in a 2:1 ratio to yield [O–Ph2Si–O–SiPh2–O]4Al4(OH)2O(OH2)Ni2(acac)4. Here, three of the acac ligands were transposed to the aluminum atoms. The nickel atoms are in a distorted octahedral coordination mode from oxygen atoms of the ligands. When iron(III)tris(acetylacetonate) reacts with the alumosiloxane [O–Ph2Si–O–SiPh2–O]3Al2O(OH)Fe2(acac)3 was isolated, in which the two iron atoms still display one of the acac ligands. One of the aluminum atoms is in a tetrahedral oxygen environment, whereas the other is in the center of a trigonal bi‐pyramid formed of oxygen atoms either of the siloxane or of acac. The iron atoms have five‐ or sixfold coordination from oxygen atoms of siloxane, acac, hydroxide or oxide.  相似文献   

3.
The reaction of dichlorido(cod)palladium(II) (cod = 1,5‐cyclooctadiene) with 2‐(benzylsulfanyl)aniline followed by heating in N,N‐dimethylformamide (DMF) produces the linear trinuclear Pd3 complex bis(μ2‐1,3‐benzothiazole‐2‐thiolato)bis[μ2‐2‐(benzylsulfanyl)anilinido]dichloridotripalladium(II) N,N‐dimethylformamide disolvate, [Pd3(C7H4NS2)2(C13H12NS)2Cl2]·2C3H7NO. The molecule has symmetry and a Pd...Pd separation of 3.2012 (4) Å. The outer PdII atoms have a square‐planar geometry formed by an N,S‐chelating 2‐(benzylsulfanyl)anilinide ligand, a chloride ligand and the thiolate S atom of a bridging 1,3‐benzothiazole‐2‐thiolate ligand, while the central PdII core shows an all N‐coordinated square‐planar geometry. The geometry is perfectly planar within the PdN4 core and the N—Pd—N bond angles differ significantly [84.72 (15)° for the N atoms of ligands coordinated to the same outer Pd atom and 95.28 (15)° for the N atoms of ligands coordinated to different outer Pd atoms]. This trinuclear Pd3 complex is the first example of one in which 1,3‐benzothiazole‐2‐thiolate ligands are only N‐coordinated to one Pd centre. The 1,3‐benzothiazole‐2‐thiolate ligands were formed in situ from 2‐(benzylsulfanyl)aniline.  相似文献   

4.
Reaction of PdCl2(CH3CN)2 with the sodium salt of 5‐mercapto‐1‐methyltetrazole (MetzSNa) in methanol solution affords an interesting dinuclear palladium complex [Pd2(MetzS)4 ] ( 1 ). However, treatment of PdCl2(CH3CN)2 with neutral MetzSH ligand in methanol solution produces a mononuclear palladium complex [Pd(MetzSH)4]Cl2 ( 2 ). Both complexes were characterized by IR, 1HNMR, UV‐Vis spectroscopy as well as X‐ray crystallography. Single‐crystal X‐ray diffraction analyses of two complexes lead to the elucidation of the structures and show that 1 possesses an asymmetric structure: one Pd atom is tetracoordinated by three sulfur atoms and one nitrogen atom to form PdS3N coordination sphere, the other Pd atom is tetracoordinated by three nitrogen atoms and one sulfur atom to form PdSN3 coordination sphere. The molecules of 1 are associated to 1‐D infinite linear chain by weak intermolecular Pd···S contacts in the crystal lattice. In 2 , the Pd atom lies on an inversion center and has a square‐planar coordination involving the S atoms from four MetzSH ligands. The two chloride ions are not involved in coordination, but are engaged in hydrogen bonding.  相似文献   

5.
As a first example, herein we show that g‐Si4N3 is expected to act as a metal‐free ferromagnet featuring both charge and spin current rectification simultaneously. Such rectification is crucial for envisioning devices that contain both logic and memory functionality on a single chip. The spin coherent quantum‐transport calculations on g‐Si4N3 reveal that the chosen system is a unique molecular spin filter, the current‐voltage characteristics of which is asymmetric in nature, which can create a perfect background for synchronous charge and spin current rectification. To shed light on this highly unusual in‐silico observation, we have meticulously inspected the bias‐dependent modulation of the spin‐polarized eigenstates. The results indicate that, whereas only the localized 2p orbitals of the outer‐ring (OR) Si atoms participate in the transmission process in the positive bias, both OR Si and N atoms contribute in the reverse bias. Furthermore, we have evaluated the spin‐polarized electron‐transfer rate in the tunneling regime, and the results demonstrate that the transfer rates are unequal in the positive and negative bias range, leading to the possible realization of a simultaneous logic–memory device.  相似文献   

6.
The geometries, magnetic properties and stabilities of the transition metal (TM) atoms encapsulated M2Si18 (M = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) clusters have been systematically calculated by using the density function theory with generalized gradient approximation. Only when the doping metal atom has no more than half‐full d electronic shell, a double hexagonal prism cage‐like M2Si18 structure could form. The total moments of M2Si18 are either 0 or 2μB. Co2Si18 is the most stable cluster among all 3d doped M2Si18 clusters. The model of shell closure at the TM atom may be helpful to understand the stability of M2Si18 clusters. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

7.
The title complex, {[Ni(C15H11N4O2S)2(C10H8N2)(H2O)2]·H2O}n, was synthesized by the reaction of nickel chloride, 4‐{[(1‐phenyl‐1H‐tetrazol‐5‐yl)sulfanyl]methyl}benzoic acid (HL) and 4,4′‐bipyridine (bpy) under hydrothermal conditions. The asymmetric unit contains two half NiII ions, each located on an inversion centre, two L ligands, one bpy ligand, two coordinated water molecules and one unligated water molecule. Each NiII centre is six‐coordinated by two monodentate carboxylate O atoms from two different L ligands, two pyridine N atoms from two different bpy ligands and two terminal water molecules, displaying a nearly ideal octahedral geometry. The NiII ions are bridged by 4,4′‐bipyridine ligands to afford a linear array, with an Ni...Ni separation of 11.361 (1) Å, which is further decorated by two monodentate L ligands trans to each other, resulting in a one‐dimensional fishbone‐like chain structure. These one‐dimensional fishbone‐like chains are further linked by O—H...O, O—H...N and C—H...O hydrogen bonds and π–π stacking interactions to form a three‐dimensional supramolecular architecture. The thermal stability of the title complex was investigated via thermogravimetric analysis.  相似文献   

8.
BaY2Si3O10, barium diyttrium trisilicate, is a new silicate grown from a molybdate‐based flux. The structure is based on zigzag chains, parallel to [010], of edge‐sharing distorted YO6 octa­hedra, linked by horseshoe‐shaped trisilicate groups and Ba atoms in irregular eight‐coordination. The layered character of the structure is caused by a succession of zigzag chains and trisilicate groups in planes parallel to (01). The Ba atoms occupy narrow channels extending parallel to [100]. The mean Y—O, Si—O and Ba—O bond lengths are 2.268, 1.626 and 1.633, and 2.872 Å, respectively. The two symmetry‐equivalent terminal SiO4 tetra­hedra in the Si3O10 unit adopt an eclipsed conformation with respect to the central SiO4 tetra­hedron; the Si—O—Si and Si—Si—Si angles are 136.35 (9) and 96.12 (4)°, respectively. One Ba, one Si and two O atoms are located on mirror planes; all remaining atoms are in general positions. The geometry of isolated trisilicate groups in inorganic compounds is briefly discussed.  相似文献   

9.
A series of Zn (II), Pd (II) and Cd (II) complexes, [(L) n MX 2 ] m (L = L‐a–L‐c; M = Zn, Pd; X = Cl; M = Cd; X = Br; n, m = 1 or 2), containing 4‐methoxy‐N‐(pyridin‐2‐ylmethylene) aniline ( L‐a ), 4‐methoxy‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐b ) and 4‐methoxy‐N‐methyl‐N‐(pyridin‐2‐ylmethyl) aniline ( L‐c ) have been synthesized and characterized. The X‐ray crystal structures of Pd (II) complexes [L 1 PdCl 2 ] (L = L‐b and L‐c) revealed distorted square planar geometries obtained via coordinative interaction of the nitrogen atoms of pyridine and amine moieties and two chloro ligands. The geometry around Zn (II) center in [(L‐a)ZnCl 2 ] and [(L‐c)ZnCl 2 ] can be best described as distorted tetrahedral, whereas [(L‐b) 2 ZnCl 2 ] and [(L‐b) 2 CdBr 2 ] achieved 6‐coordinated octahedral geometries around Zn and Cd centers through 2‐equivalent ligands, respectively. In addition, a dimeric [(L‐c)Cd(μ ‐ Br)Br] 2 complex exhibited typical 5‐coordinated trigonal bipyramidal geometry around Cd center. The polymerization of methyl methacrylate in the presence of modified methylaluminoxane was evaluated by all the synthesized complexes at 60°C. Among these complexes, [(L‐b)PdCl 2 ] showed the highest catalytic activity [3.80 × 104 g poly (methyl methacrylate) (PMMA)/mol Pd hr?1], yielding high molecular weight (9.12 × 105 g mol?1) PMMA. Syndio‐enriched PMMA (characterized using 1H‐NMR spectroscopy) of about 0.68 was obtained with Tg in the range 120–128°C. Unlike imine and amine moieties, the introduction of N‐methyl moiety has an adverse effect on the catalytic activity, but the syndiotacticity remained unaffected.  相似文献   

10.
More than twenty M6Al38 isomers and several M12Al32 isomers of carbon- and silicon-substituted aluminum clusters with six and twelve dopant atoms of general formula MnAl44–n(M = C and Si, n = 6 and 12) have been studied by the density functional theory method. Calculations predict that, in the lowest-lying M6Al38, isomer, all substitutions of C atoms for Al are localized in one outer surface layer of the aluminum cage. In the course of optimization, the C atoms with a negative charge of about 1e are incorporated into positions of the intermediate layer to transform it into a 12-atom face composed of three adjacent vertex-sharing six-membered rings with short C–Al bonds. In the favorable isomer of M6Al38, the dopants are scattered as individual Si atoms located in both outer layers or in the subsurface space between the outer layers and the inner core of the cluster. Optimization of low-lying isomers with twelve starting substitutions of C and Si for Al in both outer layers has localized two preferable C12Al32 isomers. One of them contains three covalently bonded diatomic C2 anions, which are combined through bridging aluminum atoms in the three-dimensional [C6Al7] cluster inside the severely distorted outer cage. In the second, most favorable, isomer, the dopants are distributed as isolated C anions; together with the bridging Al atoms, they form the [M12Al32] inner cage with an unusual dumbbell-like structure. For M12Al32, the aluminum cage undergoes moderate distortions. The silicon atoms remain in the outer layers and form five-membered ring subclusters [Si5] and [Si2Al3] bound to the neighboring intermediate layers through elongated and weakened Si–Al bonds. Evaluation of the energies of the model exchange reactions Al44 + M6 → M6Al38 + Al6 and Al44 + 2M6 → M12Al32 + 2Al6 shows that for M= C both reaction are exothermic, whereas for M = Si the former reaction is nearly isothermal and the second reaction is endothermic and requires significant energy inputs. The differences between the equilibrium structures and the relative positions on the energy scale of the isomers of the C6Al38–Si6Al38 and C12Al38–Si12Al38 clusters are examined.  相似文献   

11.
Al‐ and Ga‐containing open‐Dawson polyoxometalates (POMs), K10[{Al4(μ‐OH)6}{α,α‐Si2W18O66}] · 28.5H2O ( Al4 ‐ open ) and K10[{Ga4(μ‐OH)6}(α,α‐Si2W18O66)] · 25H2O ( Ga4 ‐ open ) were synthesized by the reaction of trilacunary Keggin POM, [A‐α‐SiW9O34]10–, with Al(NO3)3 · 9H2O or Ga(NO3)3 · nH2O, and unequivocally characterized by single‐crystal X‐ray analysis, 29Si and 183W NMR, and FT‐IR spectroscopy as well as elemental analysis and TG/DTA. Single‐crystal X‐ray analysis revealed that the {M4(μ‐OH)6}6+ (M = Al, Ga) clusters were included in an open pocket of the open‐Dawson polyanion, [α,α‐Si2W18O66]16–, which was constituted by the fusion of two trilacunary Keggin POMs via two W–O–W bonds. These two open‐Dawson structural POMs showed clear difference of the bite angles depending on the size of ionic radii. In cases of both compounds, the solution 29Si and 183W NMR spectra in D2O showed only one signal and five signals, respectively. These spectra were consistent with the molecular structures of Al4 ‐ and Ga4 ‐ open , suggesting that these polyoxoanions were obtained as single species and maintained their molecular structures in solution.  相似文献   

12.
The title compounds, [Mn(C10H8O6)]n and [Zn(C10H8O6)]n, are isomorphous coordination polymers prepared from 2,5‐dimethoxyterephthalic acid (H2dmt) and the respective metal(II) salts. Both complexes form three‐dimensional metal–organic frameworks with each MII centre bridged by four 2,5‐dimethoxyterephthalate (dmt2−) anions, resulting in the same type of network topology. The asymmetric unit consists of one MII cation on a twofold axis and one half of a dmt2− anion (located on a centre of inversion). In the crystal structure, the MII centres are coordinated in a rather unusual way, as there is a distorted tetrahedral inner coordination sphere formed by four carboxylate O atoms of four different dmt2− anions, and an additional outer coordination sphere formed by two methoxy and two carboxylate O atoms, with each of the O atoms belonging to one of the four different dmt2− anions forming the inner coordination sphere. Consideration of both coordination spheres results in a super‐dodecahedral coordination geometry for the MII centres. Besides the numerous MII...O interactions, both structures are further stabilized by weak C—H...O contacts.  相似文献   

13.
Designed nitrogen and sulfur co‐doped graphene wrapped magnetic core‐shell supported Pd nanoparticles were synthesized through the following steps. Firstly, Fe3O4 was prepared, coated with silica and then functionalized with amine groups to create a positive charge on the structure for enhancing the interaction of the Fe3O4@SiO2 with graphene oxide. Secondary, the pre‐catalyst wrapped with graphene to enhance adsorption of aromatic substrates through π–π stacking. Thirdly, graphene was doped with nitrogen and sulfur to increase the grafting of Pd in hybrid. Finally, Pd NPs were attached on the surface of pre‐engineered structure to produce Fe3O4@SiO2@N,S‐wG@Pd which exhibited high performance in Suzuki reactions. This superior activity can be indexed to the incorporation of N and S atoms into graphene led to high anchoring and well‐dispersion of Pd NPs on the nanocomposite surface offering large amounts of active centers, that strongly increased the interaction between Pd and substrates to decreases Pd leaching.  相似文献   

14.
Crystals of hexa‐tert‐butyldisilane, C24H54Si2, undergo a reversible phase transition at 179 (2) K. The space group changes from Ibca (high temperature) to Pbca (low temperature), but the lattice constants a, b and c do not change significantly during the phase transition. The crystallographic twofold axis of the molecule in the high‐temperature phase is replaced by a noncrystallographic twofold axis in the low‐temperature phase. The angle between the two axes is 2.36 (4)°. The centre of the molecule undergoes a translation of 0.123 (1) Å during the phase transition, but the conformation angles of the molecule remain unchanged. Between the two tri‐tert‐butylsilyl subunits there are six short repulsive intramolecular C—H...H—C contacts, with H...H distances between 2.02 and 2.04 Å, resulting in a significant lengthening of the Si—Si and Si—C bonds. The Si—Si bond length is 2.6863 (5) Å and the Si—C bond lengths are between 1.9860 (14) and 1.9933 (14) Å. Torsion angles about the Si—Si and Si—C bonds deviate by approximately 15° from the values expected for staggered conformations due to intramolecular steric H...H repulsions. A new polymorph is reported for the crystal structure of 1,1,2,2‐tetra‐tert‐butyl‐1,2‐diphenyldisilane, C28H46Si2. It has two independent molecules with rather similar conformations. The Si—Si bond lengths are 2.4869 (8) and 2.4944 (8) Å. The C—Si—Si—C torsion angles deviate by between −3.4 (1) and −18.5 (1)° from the values expected for a staggered conformation. These deviations result from steric interactions. Four Si—C(t‐Bu) bonds are almost staggered, while the other four Si—C(t‐Bu) bonds are intermediate between a staggered and an eclipsed conformation. The latter Si—C(t‐Bu) bonds are about 0.019 (2) Å longer than the staggered Si—C(t‐Bu) bonds.  相似文献   

15.
The catalytic activities of nine neutral nickel and palladium α‐acetylide complexes [M= (C=CR)2(PR'3)2, M=Ni, Pd; R = Ph, CH2OH, CH2OOCH, CH2OOCPh, CH2OOCPhOH‐o; R' = Ph, Bu] are compared. Among them, Ni(C‐CPh)2(PBu3)] shows the highest catalytic activity and gives the polystyrene with high molecular weight (Mw= 188800) and a syndio‐rich microstructure. The catalytic behavior of transition metal acetylides is related to metal, phosphine, and alkynyl ligands bonded to the metal atoms.  相似文献   

16.
New members of a novel class of metallasilatrane complexes [X‐Si‐(μ‐mt)4‐M‐Y], with M=Ni, Pd, Pt, X=F, Cl, Y=Cl, Br, I, and mt=2‐mercapto‐1‐methylimidazolide, have been synthesized and characterized structurally by X‐ray diffraction and by 29Si solid‐state NMR. Spin‐orbit (SO) effects on the 29Si chemical shifts induced by the metal, by the sulfur atoms in the ligand, and by heavy halide ligands Y=Cl, Br, I were investigated with the help of relativistic density functional calculations. Operators used in the calculations were constructed such that SO coupling can selectively be switched off for certain atoms. The unexpectedly large SO effects on the 29Si shielding in the Ni complex with X=Y=Cl reported recently originate directly from the Ni atom, not from other moderately heavy atoms in the complex. With respect to Pd, SO effects are amplified for Ni owing to its smaller ligand‐field splitting, despite the smaller nuclear charge. In the X=Cl, Y=Cl, Br, I series of complexes the Y ligand strongly modulates the 29Si shift by amplifying or suppressing the metal SO effects. The pronounced delocalization of the partially covalent M←Y bond plays an important role in modulating the 29Si shielding. We also demonstrate an influence from the X ligand on the 29Si SO shielding contributions originating at Y. The NMR spectra for [X‐Si‐(μ‐mt)4‐M‐Y] must be interpreted mainly based on electronic and relativistic effects, rather than structural differences between the complexes. The results highlight the sometimes unintuitive role of SO coupling in NMR spectra of complexes containing heavy atoms.  相似文献   

17.
The Pd atom in the title compound, [Pd(C3H5OS2)2], lies on an inversion center and adopts a square‐planar coordination geometry defined by the four S atoms of the two di­thio­carbonate (xanthate) ligands. In the solid state, the mol­ecules aggregate into layers in which the rows of mol­ecules alternate their orientation to allow each Pd atom to interact with two symmetry‐equivalent S atoms of the xanthate ligands of adjacent mol­ecules, generating a pseudo‐octahedral environment around each Pd atom. This weak interaction of 3.3579 (7) Å can be classified as a closed‐shell electrostatic intermolecular interaction.  相似文献   

18.
Analysis of silicon-oxygen distances and bond angles in simple silicates containing asymmetric bridge bonds Si-O...Si shows that the silicates with Si: O proportions of 1: 3, 1: 2.5, and 1: 2 are built of atom groups SiO 3 2? , Si2O 5 2? , and SiO2, respectively. The atoms in groups are linked through ordinary bonds Si-O or double bonds Si=O. The atoms of neighboring groups are linked by intergroup bonds Si...O which are longer than the ordinary bonds. The valences of the silicon and oxygen atoms are saturated on account of intragroup bonds; intergroup bonds are hypervalent. The structure of silicates is an analogue of the structure of compounds with intermolecular hydrogen bonds: in the latter, the atom valences are saturated by intramolecular bonds and intermolecular bonds are also hypervalent. In both cases, intergroup (intermolecular) bonds have the Coulombic nature  相似文献   

19.
The Pd atom in the title compound, [Pd(C6H5S)2(C22H36FeP2)], possesses a distorted square‐planar geometry. The phenyl rings attached to the S atoms are located on opposite sides of the plane defined by the Pd and two S atoms. The Pd—S bonds are statistically significantly different, with values of 2.3703 (7) and 2.3887 (7) Å.  相似文献   

20.
In the title compound, [Ni(C19H20N2O4)(H2O)2], the Ni atom has a distorted octahedral coordination geometry in which the tetradentate Schiff base ligand acts as a cis‐N2O2 donor defining an equatorial plane, and water mol­ecules occupy the axial positions. The two parts of the mol­ecule are related by a mirror plane that passes through the Ni atom and is perpendicular to the equatorial plane. The angular distortions from normal octahedral geometry are in the range 1–6°, and the equatorial plane, defined by the donor atoms of the Schiff base, is almost square planar. The six‐membered ring comprising the Ni, the imine N and the propyl­ene C atoms adopts a half‐chair conformation. The Ni—O [2.017 (2) Å] and Ni—N [2.071 (2) Å] distances are within the ranges expected for high‐spin octahedral nickel complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号