首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ab initio calculations at the MP2 level of theory disclose the conceivable existence of neutral complexes containing four or five distinct noble gases (Ng) each bound to a distinct Be‐atom. These multicenter polynuclear Ng molecules are formally obtained by replacing the H‐atoms of CH4 and but‐2‐yne with ? NBeNg moieties, which behave as independent monovalent ‘functional groups’. Our investigated complexes include the five homotetranuclear [C(NBeNg)4] complexes 1 – 5 (Ng=He? Xe), the five heterotetranuclear complexes [CN4Be4(He)(Ne)(Ar)(Kr)] ( 6 ), [CN4Be4(He)(Ne)(Ar)(Xe)] ( 7 ), [CN4Be4(He)(Ne)(Kr)(Xe)] ( 8 ), [CN4Be4(He)(Ar)(Kr)(Xe)] ( 9 ), and [CN4Be4(Ne)(Ar)(Kr)(Xe)] ( 10 ), and the heteropentanuclear complex [HC4N5Be5(He)(Ne)(Ar)(Kr)(Xe)] ( 11 ). We also investigated the five model complexes [H3CNBeNg] (Ng=He? Xe) containing a single ? NBeNg moiety. The geometries and vibrational frequencies of all these species, invariably characterized as minimum‐energy structures, were computed at the MP2(full)/6‐31G(d,p)/SDD level of theory, and their stability with respect to the loss of the various Ng‐atoms was evaluated by single‐point calculations at the MP2(full)/6‐311G(d)/SDD level of theory. The beryllium‐Ng binding energies range from ca. 17 (Ng=He) to ca. 63 (Ng=Xe) kJ/mol, and the results of natural‐bond‐orbital (NBO) and atoms‐in‐molecules (AIM) analysis reveal that the Be? Ng interaction is essentially electrostatic for helium, neon, argon, and krypton, and has probably a small covalent contribution for xenon.  相似文献   

2.
The potential of nuclear magnetic resonance (NMR) technique in probing the structure of porous systems including carbon nanostructures filled with inert gases is analysed theoretically using accurate calculations of neon (21Ne) nuclear magnetic shieldings. The CBS estimates of 21Ne NMR parameters were performed for single atom, its dimer and neon interacting with acetylene, ethylene and 1,3‐cyclopentadiene. Several levels of theory including restricted Hartree‐Fock (RHF), Møller‐Plesset perturbation theory to the second order (MP2), density functional theory (DFT) with van Voorhis and Scuseria's t‐dependent gradient‐corrected correlation functional (VSXC), coupled cluster with single and doubles excitations (CCSD), with single, doubles and triples included in a perturbative way (CCSD(T)) and single, doubles and tripes excitations (CCSDT) combined with polarization‐consistent aug‐pcS‐n series of basis sets were employed. The impact of neon confinement inside selected fullerene cages used as an NMR probe was studied at the RHF/pcS‐2 level of theory. A sensitivity of neon probe to the proximity of multiple CC bonds in C2H2, C2H4, C5H6 and inside C28, C30, C32, C34 and C60 fullerenes was predicted from 21Ne NMR parameters' changes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The crystal structure of the title bifunctional silicon‐bridged compound, C35H31NSi, (I), has been determined. The compound crystallizes in the centrosymmetric space group P21/c. In the crystal structure, the pairs of aryl rings in the two different chromophores, i.e. 9‐phenyl‐9H‐carbazole and 9,9‐dimethyl‐9H‐fluorene, are positioned orthogonally. In the crystal packing, no classical hydrogen bonding is observed. UV–Vis absorption and fluorescence emission spectra show that the central Si atom successfully breaks the electronic conjugation between the two different chromophores, and this was further analysed by density functional theory (DFT) calculations.  相似文献   

4.
Cationic silver‐doped silicon clusters, SinAg+ (n=6–15), are studied using infrared multiple photon dissociation in combination with density functional theory computations. Candidate structures are identified using a basin‐hopping global optimizations method. Based on the comparison of experimental and calculated IR spectra for the identified low‐energy isomers, structures are assigned. It is found that all investigated clusters have exohedral structures, that is, the Ag atom is located at the surface. This is a surprising result because many transition‐metal dopant atoms have been shown to induce the formation of endohedral silicon clusters. The silicon framework of SinAg+ (n=7–9) has a pentagonal bipyramidal building block, whereas the larger SinAg+ (n=10–12, 14, 15) clusters have trigonal prism‐based structures. On comparing the structures of SinAg+ with those of SinCu+ (for n=6–11) it is found that both Cu and Ag adsorb on a surface site of bare Sin+ clusters. However, the Ag dopant atom takes a lower coordinated site and is more weakly bound to the Sin+ framework than the Cu dopant atom.  相似文献   

5.
A DFT study was carried out on the ground state structures of ternary CulAgmAun (l + m + n = 6) clusters, with the aim of investigating changes of thermal and kinetic stabilities as an effect of composition, as well as the composition dependence of the electrostatic potential, of stable planar structures. DFT optimizations were performed using the PBE functional and the SDD basis set. All the optimized structures adopt planar geometries with bent triangular structures. Calculated binding energy values are in the range 1.5–1.9 eV/atom, which shows their thermal stability. The predicted HOMO‐LUMO energy gap values are in the semiconductor region, providing a qualitative indication of a moderate kinetic stability. NBO analyses indicate the existence of two mechanisms promoting planar structural stability, one due to bonding‐antibonding orbital interaction, and the other one due to the well‐known spd hybridization. Wiberg indices were obtained showing interatomic bonding. Electrostatic potential calculations show the existence of nucleophilic attack regions preferentially around silver and copper atoms located at the vertices while electrophilic attack regions are found in the vicinity of gold atoms over the cluster plane. Apparently, charge transfer occurs toward gold from silver and copper atoms when the concentration is favorable in the proximity of gold atoms. In particular, if the small ternary clusters discussed here contain only one gold atom, then a high electron density is observed at the site of this gold atom. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
The geometries, relative stabilities, and electronic properties of small rubidium‐doped silicon clusters RbSin (n = 1–12) have been systematically investigated using the density functional theory at the B3LYP/GENECP level. The optimized structures show that lowest‐energy isomers of RbSin are similar with the ground state isomers of pure Sin clusters and prefer the three‐dimensional for n = 3–12. The relative stabilities of RbSin clusters have been analyzed on the averaged binding energy, fragmentation energy, second‐order energy difference, and highest occupied molecular orbital‐lowest unoccupied molecular orbital energy gap. The calculated results indicate that the doping of Rb atom enhances the chemical activity of Sin frame and the magic number is RbSi2. The Mulliken population analysis reveals that the charges in the corresponding RbSin clusters transfer from the Rb atom to Si atoms. The partial density of states and chemical hardness are also discussed. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Ab initio and density functional theory‐based calculations are performed to study the structure, stability, and nature of bonding of superhalogen‐supported noble gas (Ng) compounds of the type HNgY where (Ng = Ar‐Rn; Y = BeF3). Here, BeF3 acts as the superhalogen. Calculations show that the HNgBeF3 spontaneously dissociates into product following the dissociation channels: HNgBeF3 → HBeF3 + Ng and HNgBeF3 → Ng + HF + BeF2. The transition states are optimized and the energy barriers are computed to show the metastable behavior of HNgBeF3. HNgBeF3 molecules are kinetically stable with respect to the first dissociation process having energy barriers of 1.0, 5.0, 10.6, and 13.9 kcal/mol for Ar, Kr, Xe, and Rn analogues, respectively, at CCSD(T)/Aug‐cc‐pVTZ level. These calculations suggest that the HXeBeF3 and HRnBeF3 can be shown to be stable up to ∼100 K temperature with a half‐life of ∼102 seconds. The nature of H Ng and two different types of Ng F bonds in HNgBeF3 molecules is explored through the natural bond orbital and electron density analyses. The large Wiberg bond index (WBI) values for the H Ng bond indicate the formation of almost a single bond in between H‐atoms and Ng‐atoms, whereas small WBI values for the two Ng F bonds indicate a noncovalent interaction in between them. The electron density analysis further supports the covalency of the H Ng bond and noncovalent interaction in the two Ng F bonds in HNgBeF3.  相似文献   

8.
The structures and relative stabilities of high‐spin n+1Aun?1Ag and nAun?1Ag+ (n = 2–8) clusters have been studied with density functional calculation. We predicted the existence of a number of previously unknown isomers. Our results revealed that all structures of high‐spin neutral or cationic Aun?1Ag clusters can be understood as a substitution of an Au atom by an Ag atom in the high‐spin neutral or cationic Aun clusters. The properties of mixed gold–silver clusters are strongly sized and structural dependence. The high‐spin bimetallic clusters tend to be holding three‐dimensional geometry rather than planar form represented in their low‐spin situations. Silver atom prefers to occupy those peripheral positions until to n = 8 for high‐spin clusters, which is different from its position occupied by light atom in the low‐spin situations. Our theoretical calculations indicated that in various high‐spin Aun?1Ag neutral and cationic species, 5Au3Ag, 3AuAg and 5Au4Ag+ hold high stability, which can be explained by valence bond theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

9.
Silicon in [Cl? SiH3? Cl]? is hypervalent, whereas carbon in [Cl? CH3? Cl]? is not. We have recently shown how this can be understood in terms of the ball‐in‐a‐box model, according to which silicon fits perfectly into the box that is constituted by the five substituents, whereas carbon is too small and, in a sense, “drops to the bottom” of the box. But how does carbon acquire hypervalency in the isostructural and isoelectronic noble gas (Ng)/methyl cation complexes [Ng? CH3? Ng]+ (Ng=He and Ne), which feature a delocalized D3h‐symmetric structure with two equivalent C? Ng bonds? From Ng=Ar onwards, the [Ng? CH3? Ng]+ complex again acquires a propensity to localize one of its axial C? Ng bonds and to largely break the other one, and this propensity increases in the order Ng=Ar3Ng+ and, for comparison, CH3Ng+, NgHNg+, and NgH+. It appears that, at variance with [Cl? CH3? Cl]?, the carbon atom in [Ng? CH3? Ng]+ can no longer be considered as a ball in a box of the five substituents.  相似文献   

10.
A novel 1D PbII coordination polymer containing Pb2‐(μ‐N3)2 unit [Pb(dmp)(N3)2]n (dmp =  2,9‐dimethyl‐1,10‐phenanthroline) has been prepared and characterized. Single‐crystal X‐ray diffraction analyses show that the coordination number for PbII ions is six, PbN6, with “stereochemically active” electron lone pairs and the coordination sphere being hemidirected. The single‐crystal X‐ray data show the chains interact with each other through the π–π stacking interactions, which create a 3D framework. The structure of title complex has been optimized by density functional theory. Structural parameters and IR spectra for the complex are in agreement with the crystal structure.  相似文献   

11.
The crystal structures of the four E,Z,E isomers of 1‐(4‐alk­oxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, namely (E,Z,E)‐1‐(4‐methoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C19H17NO3, (E,Z,E)‐1‐(4‐ethoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C20H19NO3, (E,Z,E)‐1‐(4‐nitro­phen­yl)‐6‐(4‐n‐propoxyphen­yl)hexa‐1,3,5‐triene, C21H21NO3, and (E,Z,E)‐1‐(4‐n‐butoxy­phen­yl)‐6‐(4‐nitro­phen­yl)hexa‐1,3,5‐triene, C22H23NO3, have been determined. Inter­molecular N⋯O dipole inter­actions between the nitro groups are observed for the meth­oxy derivative, while for the eth­oxy derivative, two adjacent mol­ecules are linked at both ends through N⋯O dipole–dipole inter­actions between the N atom of the nitro group and the O atom of the eth­oxy group to form a supra­molecular ring‐like structure. In the crystal structures of the n‐prop­oxy and n‐but­oxy derivatives, the shortest inter­molecular distances are those between the two O atoms of the alk­oxy groups. Thus, the nearest two mol­ecules form an S‐shaped supra­molecular dimer in these crystal structures.  相似文献   

12.
A series of cobalt‐doped germanium clusters, CoGen?/0 (n=2–11), are investigated by using anion photoelectron spectroscopy combined with density functional theory calculations. For both anionic and neutral CoGen (n=2–11) clusters, the critical size of the transition from exo‐ to endohedral structures is n=9. Natural population analysis shows that there is electron transfer from the Gen framework to the Co atom at n=7–11 for both anionic and neutral CoGen clusters. The magnetic moments of the anionic and neutral CoGen clusters decrease to the lowest values at n=10 and 11. The transfer of electrons from the Gen framework to the Co atom and the minimization of the magnetic moments are related to the evolution of CoGen structures from exo‐ to endohedral.  相似文献   

13.
The structural stability and bonding energies of the neutral noble gas molecules FNgX and their anions FNgX? (Ng = He, Ar, Kr; X = O, S) are discussed at the CCSD(T)/aug‐cc‐pVnZ (n = D, T) levels. Results reveal that only two neutral FKrX molecules are stable, whereas their FHeX and FArX counterparts are not. All their anions are stable and the stability mainly derives from the contribution of the extra electron, i.e., the attachment of the electron greatly enhances the orbital interactions of two bonds, F? Ng and Ng? X. Different from the anion counterparts, the electrostatic interaction energy plays a crucial role in the FKrX stability. Compared with those unstable FHeX and FArX counterparts, the enough charge distribution over each atom of FKrX ensures the effective bonding between F and Kr, and between Kr and X, consequently strengthen the stability of the neutral FKrX (X = O, S) structures. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

14.
The geometry, electronic configurations, harmonic vibrational frequencies, and stability of the structural isomers of boron phosphide clusters have been investigated using density functional theory (DFT). CCSD(T) calculations show that the lowest‐energy structures are cyclic (IIt, IVs) with Dnh symmetry for dimers and trimers. The caged structure for B4P4 lie higher in energy than the monocyclic structure with D2d symmetry (VIs). The B–P bond dominates the structures for many isomers, so that one preferred dissociation channel is loss of the BP monomer. The hybridization and chemical bonding in the different structures are also discussed. Comparisons with boron nitride clusters, the ground state structures of BnPn (n = 2, 3) clusters are analogous to those of their corresponding BnNn (n = 2, 3) counterparts. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2006  相似文献   

15.
16.
Theoretical studies on BCn (n=1–6) clusters are carried out using density functional theory, Møller–Plesset second‐order perturbation theory (MP2), coupled‐cluster calculations including up to triple excitations (CCSD(T)), and higher‐level approaches. All possible isomers depending on the positions of the boron atom are generated and the lowest‐energy isomers are determined for doublet and quartet electronic states. The three potential evolution paths of the clusters are determined as a function of their size. The energetic and electronic consequences for the increased size of structures differ significantly, which leads to representatives of the ground electronic state from different structural groups. The ab initio calculated thermal functions allow enhancements to the available atomization energies and improve the agreement between the calculated and experimental heat content.  相似文献   

17.
The stability, infrared spectra and electronic structures of (ZrO2)n (n=3–6) clusters have been investigated by using density‐functional theory (DFT) at B3LYP/6‐31G* level. The lowest‐energy structures have been recognized by considering a number of structural isomers for each cluster size. It is found that the lowest‐energy (ZrO2)5 cluster is the most stable among the (ZrO2)n (n=3–6) clusters. The vibration spectra of Zr? O stretching motion from terminal oxygen atom locate between 900 and 1000 cm?1, and the vibrational band of Zr? O? Zr? O four member ring is obtained at 600–700 cm?1, which are in good agreement with the experimental results. Mulliken populations and NBO charges of (ZrO2)n clusters indicate that the charge transfers occur between 4d orbital of Zr atoms and 2p orbital of O atoms. HOMO‐LUMO gaps illustrate that chemical stabilities of the lowest‐energy (ZrO2)n (n=3–6) clusters display an even‐odd alternating pattern with increasing cluster size.  相似文献   

18.
Two dinuclear mercury(II) iodide compounds, [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ) [L = N,N′‐bis(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine and L′ = N‐(phenyl(pyridin‐2‐yl)methylene)propane‐1,2‐diamine] were synthesized and characterized. The molecular structures of [Hg2(L)(I)4] ( 1 ) and [(L′)Hg(μ‐I)2HgI2]n ( 2 ), which were determined by single‐crystal X‐ray diffraction, indicate that each HgII in 1 has a distorted tetrahedral environment around the metal atom with a HgN2I2 chromophore, whereas in 2 one mercury(II) atom adopts a distorted tetrahedral arrangement with a HgI4 chromophore and the other has a distorted square pyramidal environment with HgN3I2 chromophore. In the solid state, compound 2 consists of a 1D coordination polymer structure.  相似文献   

19.
In this article, we propose a stochastic search‐based method, namely genetic algorithm (GA) and simulated annealing (SA) in conjunction with density functional theory (DFT) to evaluate global and local minimum structures of (TiO2)n clusters with n = 1–12. Once the structures are established, we evaluate the infrared spectroscopic modes, cluster formation energy, vertical excitation energy, vertical ionization potential, vertical electron affinity, highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) gaps, and so forth. We show that an initial determination of structure using stochastic techniques (GA/SA), also popularly known as natural algorithms as their working principle mimics certain natural processes, and following it up with density functional calculations lead to high‐quality structures for these systems. We have shown that the clusters tend to form three‐dimensional networks. We compare our results with the available experimental and theoretical results. The results obtained from SA/GA‐DFT technique agree well with available theoretical and experimental data of literature. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
杨宝华  汪洋  黄元河 《中国化学》2005,23(4):370-376
The structures and electronic properties for C36 encapsulated in four single-wall armchair carbon nanotubes (C36@(n,n), n=6-9) were calculated using ab initio self-consistent field crystal orbital method based on density functional theory. The calculations show that the interwall spacing between the carbon nanotube and C36 plays an important role in the stabilities of resultant structures. The optimum interwall spacing is about 0.30 nm and the tubes can be considered as inert containers for the encapsulated C36. The Fermi levels and relative position of energy bands also have something to do with the interwall spacing. The shifts of Fermi level and C36-derived electron states modulate the electron properties of these structures. The extra electrons fill the bands of C36@(8,8) with the optimum interwall spacing almost in a rigid-band manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号