首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
This paper describes experimental relationship between surface acoustic wave (SAW) properties of two-port SAW resonators based on polycrystalline aluminum nitride (AlN) thin films grown on Si substrates by using a pulsed reactive magnetron sputtering system and their geometry's parameters. Moreover, the influence of post-deposition heat treatment on SAW properties of AlN thin films was investigated at different annealing temperature (600 °C and 900 °C). The measurement results show the number of the inter-digital transducers (IDT) finger pairs (N), the number of reflectors grating pairs (R) and the IDT center-to-center distance (L) related to insertion loss of SAW resonators. The best result of insertion loss was 15.6 dB for SAW resonators with R = 160 pair, N = 5 pair and L = 750 μm. At the same geometry parameters, the SAW velocity and insertion loss were improved slightly after annealing at 600 °C and were worse for the films annealed at 900 °C by changes in the surface morphology and stress on the film.  相似文献   

2.
Haiming Zhang  Chunsheng Ma  Dan Zhang 《Optik》2008,119(16):793-798
A 33×33 polymer arrayed waveguide grating (AWG) multiplexer is optimized and fabricated. This device is made of polymeric materials named 2,3,4,5,6-pentafluorostyrene-co-glycidylmethacrylate (PFS-co-GMA). The central wavelength and wavelength spacing are designed to be 1550.918 and 0.8 nm, respectively. The calculated results are: the 3-dB bandwidth is about 0.24 nm, insertion loss is about 8.4 dB and crosstalk is −33.7 dB. The corresponding measured results are: the center wavelength is about 1550.85 nm, wavelength channel spacing is about 0.81 nm, 3-dB bandwidth is about 0.35 nm, crosstalk is about −20 dB, insertion loss is between 10.4 dB for the central port and 11.9 dB for the edge ports.  相似文献   

3.
Analysis of polymer electro-optic microring resonator switches   总被引:1,自引:0,他引:1  
The structure and the principle for the polymer electro-optic microring resonator (MRR) switch are proposed as well as the transfer functions. The structural parameters are optimized; the transmission characteristics are analyzed including the output power, switching time, switching voltage, insertion loss, and crosstalk. When the operation voltage is 0 V, the insertion loss and crosstalk are ∼1.2 and −20.2 dB, respectively; when the operation voltage is 10.0 V, those are ∼0.35 and −20.0 dB, respectively. Furthermore, a novel method is presented for analyzing time-domain response of the device and the switching time is determined to be ∼10.71 ps. These results indicate the favorable switching functions of the designed device.  相似文献   

4.
We designed and fabricated a four-channel reconfigurable optical add-drop multiplexer based on silicon photonic wire waveguide, which is controlled through the thermo-optic effect. The effective footprint of the device is about 1000 × 500 μm2. The minimum insertion loss including the transmission loss and coupling loss is about 10.7 dB. The tuning bandwidth is about 17 nm, the average tuning efficiency about 6.11 mW/nm and the tuning speed about 24.5 kHz.  相似文献   

5.
We demonstrate effective implementation of the Fabry-Perot interferometer with subwavelength aperture arrays on its two metal mirrors to achieve polarization-independent narrow band-pass filtering. By superimposing of aperture array fundamental resonance transmission with one of the Fabry-Perot interference peaks, the moderate filter insertion loss of −5 dB, narrow band-pass width of 15 μm, and efficient out-of-band rejection within the ∼0.1-3 THz range are reported. The Siemens-star-shaped apertures in arrays play an important role to achieve such polarization independence and small insertion loss.  相似文献   

6.
A 32 × 32 arrayed waveguide grating (AWG) multiplexer operating around the 1550 nm wavelength has been designed and fabricated using highly fluorinated polyethers. The propagation loss of the slab waveguide is about 0.3 dB/cm at 1550 nm wavelength. The channel spacing of the AWG multiplexer is 0.8 nm (100 GHz). The insertion loss of the multiplexer is 10.3-15.3 dB and the crosstalk is less than −20 dB.  相似文献   

7.
This paper presents a novel method used to manufacture stacks of multiple matching layers for 15 MHz piezoelectric ultrasonic transducers, using fabrication technology derived from the MEMS industry. The acoustic matching layers were made on a silicon wafer substrate using micromachining techniques, i.e., lithography and etch, to design silicon and polymer layers with the desired acoustic properties. Two matching layer configurations were tested: a double layer structure consisting of a silicon–polymer composite and polymer and a triple layer structure consisting of silicon, composite, and polymer. The composite is a biphase material of silicon and polymer in 2-2 connectivity. The matching layers were manufactured by anisotropic wet etch of a (1 1 0)-oriented Silicon-on-Insulator wafer. The wafer was etched by KOH 40 wt%, to form 83 μm deep and 4.5 mm long trenches that were subsequently filled with Spurr’s epoxy, which has acoustic impedance 2.4 MRayl. This resulted in a stack of three layers: The silicon substrate, a silicon–polymer composite intermediate layer, and a polymer layer on the top. The stacks were bonded to PZT disks to form acoustic transducers and the acoustic performance of the fabricated transducers was tested in a pulse-echo setup, where center frequency, −6 dB relative bandwidth and insertion loss were measured. The transducer with two matching layers was measured to have a relative bandwidth of 70%, two-way insertion loss 18.4 dB and pulse length 196 ns. The transducers with three matching layers had fractional bandwidths from 90% to 93%, two-way insertion loss ranging from 18.3 to 25.4 dB, and pulse lengths 326 and 446 ns. The long pulse lengths of the transducers with three matching layers were attributed to ripple in the passband.  相似文献   

8.
Liu C  Djuth F  Li X  Chen R  Zhou Q  Shung KK 《Ultrasonics》2012,52(4):497-502
This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 × 9 μm. The width of the kerf among pillars was ∼5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and −6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about −35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers, e.g. 1D and 2D arrays.  相似文献   

9.
Structural model and design technique are proposed for a polymer directional coupler electro-optic switch with rib waveguides and push-pull electrodes, of which the electric field distribution is analyzed by the conformal transforming method and image method. In order to get the minimum mode loss and the minimum switching voltage, the parameters of the waveguide and electrode are optimized, such as the core with, core thickness, buffer layer between the core and the electrode, coupling gap between the waveguides, electrode thickness, electrode width and electrode gap. Switching Characteristics are analyzed, which include the output power, insertion loss, and crosstalk. To realize normal switching function, the fabrication error, spectrum shift, and coupling loss between a single mode fiber (SMF) and the waveguide are discussed. Simulation results show that the coupling length is 3082 μm, push-pull switching voltage is 2.14 V, insertion loss is less than 1.17 dB, and crosstalk is less than −30 dB for the designed device.  相似文献   

10.
The effects of sulfur content and slab reheating temperature on the magnetic properties of four fully processed nonoriented electrical steels have been investigated. Four slabs of nonoriented electrical steels with sulfur content in the range of 0.0006–0.0126 wt% were reheated to 1100, 1200, and 1300 °C, respectively. Then, they were hot rolled and annealed at 700 °C, cold rolled at the same condition and annealed at 820 °C in the salt bath furnace for 1 min to simulate continuous annealing. The ac core loss, dc hysteresis loss, and ac and dc permeability were measured at 15 kG inductions. It was found that the amount of inclusions in the hot-rolled bands increased with increasing slab reheating temperature and increasing sulfur content in steels. After final annealing, grain sizes of cold-rolled steel sheets decreased with increasing sulfur content and increasing slab reheating temperature. The main preferred orientations in the final annealed steel sheets were (0 1 1) 〈1 0 0〉 and (1 1 1) 〈u v wγ fiber texture. Steel sheets containing 0.0032 and 0.0060 wt% sulfur developed a more stronger (0 1 1)〈1 0 0〉 texture than other steel sheets. However, steel sheets containing 0.0126 wt% sulfur had the weakest (1 1 1)〈u v w〉 texture during slab reheating at temperatures higher than 1200 °C. Both ac core loss and dc hysteresis loss increased with increasing slab reheating temperature and increasing sulfur content in steel sheets. Both ac and dc permeability decreased with increasing slab reheating temperature and increasing sulfur content in steel sheets. If sulfur content decreased from 0.0060 to 0.0032 wt%, there were great improvements in ac core loss, dc hysteresis loss, and ac and dc permeability. However, eddy current loss was almost independent of the sulfur content and slab reheating temperature.  相似文献   

11.
A photonic wire-based directional coupler based on SOI was fabricated by e-beam lithography (EBL) and the inductively coupled plasma (ICP) etching method. The size of the sub-micron waveguide is 0.34 μm × 0.34 μm, and the length in the coupling region and the separation between the two parallel waveguides are 410 and 0.8 μm, respectively. The measurement results are in good agreement with the results simulated by 3D finite-difference time-domain method. The transmission power from two output ports changed reciprocally with about 23 nm wavelength spacing between the coupled and direct ports. The extinction ratio of the device was between 5 and 10 dB, and the insertion loss of the device in the wavelength range 1520-1610 nm was between 22 and 24 dB, which included an about 18.4 ± 0.4 dB coupling loss between the taper fibers and the polished sides of the device.  相似文献   

12.
This paper describes the design of a large sized diamond window for 1 MW, 170 GHz gyrotron. The diameter and the thickness of the diamond window are 80 mm and 1.482 mm, respectively, whose edge is directly cooled by water. The CST microwave studio has been used for the S-parameter, and finite element analysis code ANSYS has been used for the thermal and the structural simulation. The return loss (S11) and insertion loss (S21) of the 170 GHz gyrotron window have been found −39.80 dB and −0.011 dB, respectively. The thermal and structural analysis of RF window the 397 K temperature at disk center and maximum displacement 0.01 mm has been found in the window disk during the thermal analysis.  相似文献   

13.
A magnetic field tunable, broadband, low-loss, negative refractive index metamaterial is fabricated using yttrium iron garnet (YIG) and a periodic array of copper wires. The tunability is demonstrated from 18 to 23 GHz under an applied magnetic field with a figure of merit of 4.2 GHz/kOe. The tuning bandwidth is measured to be 5 GHz compared to 0.9 GHz for fixed field. We measure a minimum insertion loss of 4 dB (or 5.7 dB/cm) at 22.3 GHz. The measured negative refractive index bandwidth is 0.9 GHz compared to 0.5 GHz calculated by the transfer function matrix theory and 1 GHz calculated by finite element simulation.  相似文献   

14.
A novel 1 × N optical switch array based on arrayed waveguide grating (AWG) structure is presented in this paper. The device is designed for polymeric materials with a large negative thermooptic (TO) coefficient, which is employed to change the imaging effect and to realize optical switching. When input wavelength is located in a special waveband, the optical signal will image at different output channel as temperature changes. The two-dimensional finite difference beam propagation method (FD-BPM) has been used to simulate a 1 × 9 optical switch array. The insertion loss of this switch array is below 1.37 dB and the extinction ratio is better than 31 dB at 1550 nm, when the coupling and propagation loss is neglected. The optimum design and the simulation results show that this structure could be a multiple wavelengths switching at the same time.  相似文献   

15.
Guohua Hu 《Optics Communications》2010,283(10):2133-948
A new polymeric 1 × 2 thermo-optic switch with significantly low crosstalk and low power consumption is presented. The thermo-optic coefficients of the core layer and the cladding layer are obviously different to each other. The refractive index of the core changes so that it would be less than that of the top cladding when the temperature is sufficiently high. Using this phenomenon, low crosstalk performance is achieved. The result indicated that the crosstalk of the proposed device could be improved from −20 to −60 dB. The switching insertion loss is 1.71 dB and the total heating power is no more than 16 mW.  相似文献   

16.
Zinc oxide (ZnO) thin films were deposited on unheated silicon substrates via radio frequency (RF) magnetron sputtering, and the post-deposition annealing of the ZnO thin films was performed at 400 °C, 600 °C, 800 °C, and 1000 °C. The characteristics of the thin films were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The films were then used to fabricate surface acoustic wave (SAW) resonators. The effects of post-annealing on the SAW devices are discussed in this work. Resulting in the 600 °C is determined as optimal annealing temperature for SAW devices. At 400 °C, the microvoids exit between the grains yield large root mean square (RMS) surface roughness and higher insertion losses in SAW devices. The highest RMS surface roughness, crack and residual stress cause a reduction of surface velocity (about 40 m/s) and increase dramatically insertion loss at 1000 °C. The SAW devices response becomes very weak at this temperature, the electromechanical coupling coefficient (k2) of ZnO film decrease from 3.8% at 600 °C to 1.49% at 1000 °C.  相似文献   

17.
We investigate characteristics of gold metal strip waveguides based on long range surface plasmon polaritons (LRSPPs) along thin metal strips embedded in a polymer for practical applications at the telecommunication wavelengths of 1.31 and 1.55 μm. Guiding properties of the gold strip waveguides are theoretically and experimentally evaluated with the limited thickness and width up to ∼20 nm and ∼10 μm, respectively. The lowest propagation loss of ∼1.4 dB/cm is obtained with a 14.5-nm-thick and 2-μm-wide gold strip at 1.55 μm. With a single-mode fiber, the lowest coupling loss of ∼0.4 dB/facet is achieved with a 14.5-nm-thick and 5-μm-wide gold strip at 1.55 μm. The lowest insertion losses are obtained 8-9 dB with 1.5 cm-long gold strips of a limited thickness and width at both the wavelengths. We demonstrate a 10 Gbps optical signal transmission via the LRSPP waveguide with a 14 nm-thick, 2.5 μm-wide, and 4 cm-long gold strip. These LRSPP waveguides have potential applications for optical interconnects and communications.  相似文献   

18.
Z. Chafi  N. Keghouche  C. Minot 《Surface science》2007,601(11):2323-2329
DFT-GGA calculations are used to investigate interaction of atomic nickel with ceria. Nickel adsorption on surfaces is compared with insertion into the bulk and subsurfaces using VASP calculations. The adsorption is considered upon the (1 1 1) and (1 1 0) surfaces of ceria since these surfaces are the most stable ones being formally generated from the least number of bond cleavages (one or two Ce-O bonds per Ce, respectively). When Ni atom is adsorbed on the (1 1 1) surface, it occupies a position atop whereas over the (1 1 0) surface it occupies a bridging position. The adsorption quenches the spin. Results for insertion both in the bulk material and in the (1 1 1) and (1 1 0) subsurfaces are presented. For the bulk, it is shown that an increase of Ni amount from 1/4 to 1 makes insertion more exothermic. The later is accompanied by a lattice expansion and a reduction of symmetry. For an amount 1/4, the Ni is inserted to a tetrahedral site. At larger concentration, it is in trigonal environment of three oxygen atoms, additional oxygen ligands being less tightly bound. For insertion in the sublayers of the (1 1 1) subsurface, the nickel atom occupies a similar position, also a ternary site. The interaction energy for nickel atom insertion is comparable to that for nickel adsorption, slightly larger for (1 1 1), slightly smaller for (1 1 0) surface. Diffusion into the bulk is thus likely. When inserted, the distance Ni-Ce is becomes short, 2.70 Å, in agreement with experiment and the system may evolve with the formation of a Ni2Ce alloy.  相似文献   

19.
Detailed model, analysis and design technique are presented for simulating a high-speed polymer Mach-Zehnder interferometer (MZI) electro-optic switch with push-pull dual driving electrodes and rib waveguides. The novel formulas of the time-domain response are derived. Thorough optimization and simulation for the designed device are performed. The total length of the basic function unit of the switch is about 5049 μm, the push-pull switching voltage is 2.23 V, the switching time is 18.1 ps, and the insertion loss and crosstalk are less than 2.64 and −30 dB, respectively, within the range of the operation wavelength from 1534 to 1566 nm. These results are in good agreement with those obtained from the beam propagation method (BPM).  相似文献   

20.
This paper presents the design, fabrication, and performance of a compact high temperature superconducting duplexer at VHF-band. The duplexer consists of a T-junction and two four-pole filters with an ultra-narrow bandwidth of 400 kHz at 216 MHz and 220 MHz, respectively. By using gap-coupled feedlines in the filter design procedure, the duplexer is constructed by connecting the two filters using a T-junction with short-length branches. The two filters are fabricated on separate substrates and are carefully packaged to achieve a high isolation between the duplexer channels. The duplexer has a compact size of 41.6 mm × 28 mm. The measured results at 73 K show a high performance. The return loss is −17 dB, the insertion losses of both channels are less than 0.16 dB, and the out-of-band rejections are higher than 60 dB. The isolation between the two channels is better than 76 dB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号