首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents a new data on the crystal structure, thermal expansion and IR spectra of Bi3B5O12. The Bi3B5O12 single crystals were grown from the melt of the same stoichiometry by Czochralski technique. The crystal structure of Bi3B5O12 was refined in anisotropic approximation using single-crystal X-ray diffraction data. It is orthorhombic, Pnma, a=6.530(4), b=7.726(5), c=18.578(5) Å, V=937.2(5) Å3, Z=4, R=3.45%. Bi3+ atoms have irregular coordination polyhedra, Bi(1)O6 (d(B-O)=2.09-2.75 Å) and Bi(2)O7 (d(B-O)=2.108-2.804 Å). Taking into account the shortest bonds only, these polyhedra are considered here as trigonal Bi(1)O3 (2.09-2.20 Å) and tetragonal Bi(2)O4 (2.108-2.331 Å) irregular pyramids with Bi atoms in the tops of both pyramids. The BiO4 polyhedra form zigzag chains along b-axis. These chains alternate with isolated anions [B2IVB3IIIO11]7− through the common oxygen atoms to form thick layers extended in ab plane. A perfect cleavage of the compound corresponds to these layers and an imperfect one is parallel to the Bi-O chains. The Bi3B5O12 thermal expansion is sharply anisotropic (α11α22=12, α33=3×10−6 °C−1) likely due to a straightening of the flexible zigzag chains along b-axis and decreasing of their zigzag along c-axis. Thus the properties like cleavage and thermal expansion correlate to these chains.  相似文献   

2.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

3.
A new compound, Li4CaB2O6, has been synthesized by solid-state reaction and its structure has been determined from powder X-ray diffraction data by direct methods. The refinement was carried out using the Rietveld methods and the final refinement converged with Rp=10.4%, Rwp=14.2%, Rexp=4.97%. This compound belongs to the orthorhombic space group Pnnm, with lattice parameters a=9.24036(9) Å, b=8.09482(7) Å, and c=3.48162(4) Å. Fundamental building units are isolated [BO3]3− anionic groups, which are all parallel to the a-b plane stacked along the c-axis. The Ca atoms are six-coordinated by the O atoms to form octahedral coordination polyhedra, which are joined together through edges along the c-axis, forming infinitely long three-dimensional chains. The Li atoms have a four-fold and a five-fold coordination with O atoms that lead to complex Li-O-Li chains that also extend along the c-axis. The infrared spectrum of Li4CaB2O6 was also studied, which is consistent with the crystallographic study.  相似文献   

4.
Three novel metal polyphosphides, α-SrP3, BaP8, and LaP5, were prepared in BN crucibles by the reaction of the respective stoichiometric mixtures under a high pressure of 3 GPa at 950-1000°C. Their crystal structures were determined from single-crystal X-ray data (α-SrP3: space group C2/m, a=9.199(6) Å, b=7.288(3) Å, c=5.690(3) Å, β=113.45(4)°, Z=4, R1/wR2=0.0684/0.1180 for 471 observed reflections and 22 variables; BaP8: space group P−1, a=6.762(2) Å, b=7.233(2) Å, c=8.567(2) Å, α=86.32(2)°, β=84.31(2)°, γ=70.40(2)°, Z=2, R1/wR2=0.0476/0.1255 for 2702 observed reflections and 82 variables; LaP5: space group P21/m, a=4.885(1) Å, b=9.673(3) Å, c=5.577(2) Å, β=105.32(2)°, Z=2, R1/wR2=0.0391/0.1034 for 1272 observed reflections and 31 variables). α-SrP3 is isostructural with SrAs3 and the crystal structure consists of two-dimensional puckered polyanionic layers 2[P3]2− that stack along the c-axis yielding channels occupied by Sr2+ counterions. BaP8 crystallizes in a new structure type which contains a three-dimensional infinite polyanionic framework 3[P3]2−, with large channels hosting the barium cations. LaP5 is a layered compound containing 2[P5]3− polyanionic layers separated by La3+ ions. All three compounds exhibit expected diamagnetic behaviors.  相似文献   

5.
A new ternary compound, U3Co2Ge7, has been synthesized from the corresponding elements by a high temperature reaction using molten tin flux. It crystallizes in the orthorhombic La3Co2Sn7-type (Pearson's symbol oC24, space group Cmmm, No. 65) with lattice parameters determined from single-crystal X-ray diffraction as follows: a=4.145(2) Å; b=24.920(7); c=4.136(2) Å, V=427.2(3) Å3. Structure refinements confirm an ordered structure having two crystallographically inequivalent uranium atoms, occupying sites with dissimilar coordination. U3Co2Ge7 orders ferromagnetically below 40 K and undergoes a consecutive magnetic transition at 20 K. These results have been obtained from temperature- and field-dependent magnetization, resistivity and heat-capacity measurements. The estimated Sommerfeld coefficient γ=87 mJ/mol-U K2 suggests U3Co2Ge7 to be a moderately heavy-fermion material.  相似文献   

6.
Sr2Co2O5 with the perovskite-related brownmillerite structure has been synthesised via quenching, with the orthorhombic unit cell parameters a=5.4639(3) Å, b=15.6486(8) Å and c=5.5667(3) Å based on refinement of neutron powder diffraction data collected at 4 K. Electron microscopy revealed L-R-L-R-intralayer ordering of chain orientations, which require a doubling of the unit cell along the c-parameter, consistent with the assignment of the space group Pcmb. However, on the length scale pertinent to NPD, no long-range order is observed and the disordered space group Imma appears more appropriate. The magnetic structure corresponds to G-type order with a moment of 3.00(4) μB directed along [1 0 0].  相似文献   

7.
Hydrothermal synthesis in the K-Mo oxide system was investigated as a function of the pH of the reaction medium. Four compounds were formed, including two K2Mo4O13 phases. One is a new low-temperature polymorph, which crystallizes in the orthorhombic, space group Pbca, with Z=8 and unit cell dimensions a=7.544(1) Å, b=15.394(2) Å, c=18.568(3) Å. The other is the known triclinic K2Mo4O13, whose structure was re-determined from single crystal data; its cell parameters were determined as a=7.976(2) Å, b=8.345(2) Å, c=10.017(2) Å, α=107.104(3)°, β=102.885(3)°, γ=109.760(3)°, which are the standard settings of the crystal lattice. The orthorhombic phase converts endothermically into triclinic phase at ca. 730 K with a heat of transition of 8.31 kJ/mol.  相似文献   

8.
The crystal chemistry and crystallography of the compounds SrR2CuO5 (Sr-121, R=lanthanides) were investigated using the powder X-ray Rietveld refinement technique. Among the 11 compositions studied, only R=Dy and Ho formed the stable SrR2CuO5 phase. SrR2CuO5 was found to be isostructural with the “green phase”, BaR2CuO5. The basic structure is orthorhombic with space group Pnma. The lattice parameters for SrDyCuO5 are a=12.08080(6) Å, b=5.60421(2) Å, c=7.12971(3) Å, V=482.705(4) Å3, and Z=8; and for the Ho analog are a=12.03727(12) Å, b=5.58947(7) Å, c=7.10169(7) Å, V=477.816(9) Å3, and Z=8. In the SrR2CuO5 structure, each R is surrounded by seven oxygen atoms, forming a monocapped trigonal prism (RO7). The isolated CuO5 group forms a distorted square pyramid. Consecutive layers of prisms are stacked in the b-direction. Bond valence calculations imply that residual strain is largely responsible for the narrow stability of the SrR2CuO5 phases with R=Dy and Ho only. X-ray powder reference diffraction patterns for SrDy2CuO5 and SrHo2CuO5 were determined.  相似文献   

9.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

10.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

11.
Phase transitions in MgAl2O4 were examined at 21-27 GPa and 1400-2500 °C using a multianvil apparatus. A mixture of MgO and Al2O3 corundum that are high-pressure dissociation products of MgAl2O4 spinel combines into calcium-ferrite type MgAl2O4 at 26-27 GPa and 1400-2000 °C. At temperature above 2000 °C at pressure below 25.5 GPa, a mixture of Al2O3 corundum and a new phase with Mg2Al2O5 composition is stable. The transition boundary between the two fields has a strongly negative pressure-temperature slope. Structure analysis and Rietveld refinement on the basis of the powder X-ray diffraction profile of the Mg2Al2O5 phase indicated that the phase represented a new structure type with orthorhombic symmetry (Pbam), and the lattice parameters were determined as a=9.3710(6) Å, b=12.1952(6) Å, c=2.7916(2) Å, V=319.03(3) Å3, Z=4. The structure consists of edge-sharing and corner-sharing (Mg, Al)O6 octahedra, and contains chains of edge-sharing octahedra running along the c-axis. A part of Mg atoms are accommodated in six-coordinated trigonal prism sites in tunnels surrounded by the chains of edge-sharing (Mg, Al)O6 octahedra. The structure is related with that of ludwigite (Mg, Fe2+)2(Fe3+, Al)(BO3)O2. The molar volume of the Mg2Al2O5 phase is smaller by 0.18% than sum of molar volumes of 2MgO and Al2O3 corundum. High-pressure dissociation to the mixture of corundum-type phase and the phase with ludwigite-related structure has been found only in MgAl2O4 among various A2+B3+2O4 compounds.  相似文献   

12.
The crystal and magnetic structures of the brownmillerite material, Ca2Fe1.039(8)Mn0.962(8)O5 were investigated using powder X-ray and neutron diffraction methods, the latter from 3.8 to 700 K. The compound crystallizes in Pnma space group with unit cell parameters of a=5.3055(5) Å, b=15.322(2) Å, c=5.4587(6) Å at 300 K. The neutron diffraction study revealed the occupancies of Fe3+ and Mn3+ ions in both octahedral and tetrahedral sites and showed some intersite mixing and a small, ∼4%, Fe excess. While bulk magnetization data were inconclusive, variable temperature neutron diffraction measurements showed the magnetic transition temperature to be 407(2) K below which a long range antiferromagnetic ordering of spins occurs with ordering wave vector k=(000). The spins of each ion are coupled antiferromagnetically with the nearest neighbors within the same layer and coupled antiparallel to the closest ions from the neighboring layer. This combination of intra- and inter-layer antiparallel arrangement of spins forms a G-type magnetic structure. The ordered moments on the octahedral and tetrahedral sites at 3.8 K are 3.64(16) and 4.23(16) μB, respectively.  相似文献   

13.
The calcium cobalt oxide CaCo2O4 was synthesized for the first time and characterized from a powder X-ray diffraction study, measuring magnetic susceptibility, specific heat, electrical resistivity, and thermoelectric power. CaCo2O4 crystallizes in the CaFe2O4 (calcium ferrite)-type structure, consisting of an edge- and corner-shared CoO6 octahedral network. The structure of CaCo2O4 belongs to an orthorhombic system (space group: Pnma) with lattice parameters, a=8.789(2) Å, b=2.9006(7) Å and c=10.282(3) Å. Curie-Weiss-like behavior in magnetic susceptibility with the nearly trivalent cobalt low-spin state (Co3+, 3d, S=0), semiconductor-like temperature dependence of resistivity (ρ=3×10−1 Ω cm at 380 K) with dominant hopping conduction at low temperature, metallic-temperature-dependent large thermoelectric power (Seebeck coefficient: S=+147 μV/K at 380 K), and Schottky-type specific heat with a small Sommerfeld constant (γ=4.48(7) mJ/Co mol K2), were observed. These results suggest that the compound possesses a metallic electronic state with a small density of states at the Fermi level. The doped holes are localized at low temperatures due to disorder in the crystal. The carriers probably originate from slight off-stoichiometry of the phase. It was also found that S tends to increase even more beyond 380 K. The large S is possibly attributed to residual spin entropy and orbital degeneracy coupled with charges by strong electron correlation in the cobalt oxides.  相似文献   

14.
The compound CeAu0.28Ge1.72 crystallizes in the ThSi2 structure type in the tetragonal space group I41/amd with lattice parameters a=b=4.2415(6) Å c=14.640(3) Å. CeAu0.28Ge1.72 is a polar intermetallic compound having a three-dimensional Ge/Au polyanion sub-network filled with Ce atoms. The magnetic susceptibility data show Curie-Weiss law behavior above 50 K. The compound orders ferromagnetically at ∼8 K with estimated magnetic moment of 2.48 μB/Ce. The ferromagnetic ordering is confirmed by the heat capacity data which show a rise at ∼8 K. The electronic specific heat coefficient (γ) value obtained from the paramagnetic temperature range 15-25 K is∼124(5) mJ/ mol K2. The entropy change due to the ferromagnetic transition is ∼4.2 J/mol K which is appreciably reduced compared to the value of R ln(2) expected for a crystal-field-split doublet ground state and/or Kondo exchange interactions.  相似文献   

15.
Reported are the syntheses, crystal structure determinations from single-crystal X-ray diffraction, and magnetic properties of two new ternary compounds, Eu11Cd6Sb12 and Eu11Zn6Sb12. Both crystallize with the complex Sr11Cd6Sb12 structure type—monoclinic, space group C2/m (no. 12), Z=2, with unit cell parameters a=31.979(4) Å, b=4.5981(5) Å, c=12.3499(14) Å, β=109.675(1)° for Eu11Zn6Sb12, and a=32.507(2) Å, b=4.7294(3) Å, c=12.4158(8) Å, β=109.972(1)° for Eu11Cd6Sb12. Their crystal structures are best described as made up of polyanionic and ribbons of corner-shared ZnSb4 and CdSb4 tetrahedra and Eu2+ cations. A notable characteristic of these structures is the presence of Sb-Sb interactions, which exist between two tetrahedra from adjacent layers, giving rise to unique channels. Detailed structure analyses shows that similar bonding arrangements are seen in much simpler structure types, such as Ca3AlAs3 and Ca5Ga2As6 and the structure can be rationalized as their intergrowth. Temperature-dependent magnetization measurements indicate that Eu11Cd6Sb12 orders anti-ferromagnetically below 7.5 K, while Eu11Zn6Sb12 does not order down to 5 K. Resistivity measurements confirm that Eu11Cd6Sb12 is poorly metallic, as expected for a Zintl phase.  相似文献   

16.
Two new rare-earth metal containing Zintl phases, Eu11InSb9 and Yb11InSb9 have been synthesized by reactions of the corresponding elements in molten In metal to serve as a self-flux. Their crystal structures have been determined by single crystal X-ray diffraction—both compounds are isostructural and crystallize in the orthorhombic space group Iba2 (No. 45), Z=4 with unit cell parameters a=12.224(2) Å, b=12.874(2) Å, c=17.315(3) Å for Eu11InSb9, and a=11.7886(11) Å, b=12.4151(12) Å, c=16.6743(15) Å for Yb11InSb9, respectively (Ca11InSb9-type, Pearson's code oI84). Both structures can be rationalized using the classic Zintl rules, and are best described in terms of discrete In-centered tetrahedra of Sb, [InSb4]9−, isolated Sb dimers, [Sb2]4−, and isolated Sb anions, Sb3−. These anionic species are separated by Eu2+ and Yb2+ cations, which occupy the empty space between them and counterbalance the formal charges. Temperature-dependent magnetic susceptibility and resistivity measurements corroborate such analysis and indicate divalent Eu and Yb, as well as poorly metallic behavior for both Eu11InSb9 and Yb11InSb9. The close relationships between these structures and those of the monoclinic α-Ca21Mn4Sb18 and Ca21Mn4Bi18 are also discussed.  相似文献   

17.
The anhydrous salt K2B12F12 crystallized from aqueous solution and its structure was determined by single crystal X-ray diffraction. The Ni2In-type structure it exhibits is rare for an A2X ionic compound at 25 °C and 1 atm., consisting of an expanded hexagonal close-packed array of B12F122− centroids (cent?cent distances: 7.204-8.236 Å) with half of the K+ ions filling all of the Oh holes and half of the K+ ions filling all of the D3h trigonal holes in the close-packed layers that are midway between two “empty” Td holes. The structure is also unusual in that the bond-valence sum for the K+ ions in Oh holes is less than or equal to 0.73 (the bond-valence sum for the other type of K+ ion is 1.16). A variation of the Ni2In structure is exhibited by the previously published monohydrate Cs2(H2O)B12F12, for which an improved structure is also reported here. For K2B12F12: monoclinic, C2/c, a = 8.2072(8), b = 14.2818(7), c = 11.3441(9) Å, β = 92.832(5)°, Z = 4, T = 120(2) K. For Cs2(H2O)B12F12: orthorhombic, P212121, a = 9.7475(4), b = 10.2579(4), c = 15.0549(5) Å, Z = 4, T = 110(1) K.  相似文献   

18.
The two new compounds, Sr4Cu3(AsO4)2(AsO3OH)4·3H2O (1) and Ba2Cu4(AsO4)2(AsO3OH)3(2), were synthesized under hydrothermal conditions. They represent previously unknown structure types and are the first compounds synthesized in the systems SrO/BaO-CuO-As2O5-H2O. Their crystal structures were determined by single-crystal X-ray diffraction [space group C2/c, a=18.536(4) Å, b=5.179(1) Å, c=24.898(5) Å, β=93.67(3)°, V=2344.0(8) Å3, Z=4 for 1; space group P42/n, a=7.775(1) Å, c=13.698(3) Å, V=828.1(2) Å3, Z=2 for 2]. The crystal structure of 1 is related to a group of compounds formed by Cu2+-(XO4)3− layers (X=P5+, As5+) linked by M cations (M=alkali, alkaline earth, Pb2+, or Ag+) and partly by hydrogen bonds. In 1, worth mentioning is the very short hydrogen bond length, D···A=2.477(3) Å. It is one of the examples of extremely short hydrogen bonds, where the donor and acceptor are crystallographically different. Compound 2 represents a layered structure consisting of Cu2O8 centrosymmetric dimers crosslinked by As1φ4 tetrahedra, where φ is O or OH, which are interconnected by Ba, As2 and hydrogen bonds to form a three-dimensional network. The layers are formed by Cu2O8 centrosymmetric dimers of CuO5 edge-sharing polyhedra, crosslinked by As1O4 tetrahedra. Vibrational spectra (FTIR and Raman) of both compounds are described. The spectroscopic manifestation of the very short hydrogen bond in 1, and ABC-like spectra in 2 were discussed.  相似文献   

19.
β-UP2O7 has been synthesized under hydrothermal conditions (θ=500°C, P=200 MPa), using UO2 and H3PO4. β-UP2O7 crystallizes in the orthorhombic space group Pn21a, with a=11.526 (2) Å, b=7.048 (2) Å, c=12.807 (2) Å and Z=4. Its structure has been determined through direct methods and difference Fourier synthesis and has been refined to R=0.0396. The structure is built on UO8 polyhedral chains along the b-axis. PO43− and P3O105− groups coexist in the structure and the latter groups form non-linear chains. Cohesion of the structure is made through the linkage of UO8 chains by PO4 and P3O10 groups leading to the formula U2(PO4)(P3O10) instead of β-UP2O7. Vibrational and optical spectra confirm the results obtained by X-ray diffraction. DTA-TGA measurements show that the transformation of U2(PO4)(P3O10) to the cubic α-UP2O7 occurs at θ=870°C.  相似文献   

20.
The strontium chromium oxide [Sr2O2][CrO2]1.85 misfit layer compound has been synthesised at high-pressure and high-temperature conditions. Electron diffraction patterns and high-resolution transmission electron microscopy images along [001] show the misfit character of the different layers composing the structure with a supercell along the incommensurate parameter b≈7b1≈13b2. The modulated crystal structure has been refined within the superspace formalism against single-crystal X-ray diffraction data, employing the (3+1)-dimensional superspace group Cnmb(0σ20)0 0 s. The compound has a composite structure with lattice parameters a1=5.182(1) Å, b1=5.411(1) Å, c1=18.194(3) Å for the first, SrO, subsystem and the same a and c, but with b2=2.925(1) Å for the second, CrO2, subsystem. The layer stacking is similar to that of orthorhombic PbS(TiS2)1.18, but with a much stronger intersubsytem bonding in the case of the oxide. The intersubsystem lattice mismatch is mainly handled by displacement modulations of the Sr atoms, correlated with modulations of the valence, the coordination and the anisotropic displacement parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号