首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Propagation of the firing rate and synchronous firings in a 10-layer feed-forward neuronal network are studied. When neurons in layer 1 are subject to white noise, synchrony can be built up in deep layers and the firing rate can be propagated. A network with 6 layers is found to be enough for such behavior. A periodic signal with frequencies of 30-80 Hz can be selectively transmitted through the network. These abilities in information processing due to synchrony can be modulated by noise and the operating mode of neurons, and our results are relevant to experimental findings.  相似文献   

2.
This paper investigates vibrational resonance in multi-layer feedforward network (FFN) based on FitzHugh-Nagumo (FHN) neuron model. High-frequency stimuli can improve the input-output linearity of firing rates, especially for the inputs with low firing rate. For FFN network, it is found that high-frequency disturbances play important roles in enhancing the propagation of weak signal through layers. Synfire-enhanced phenomenon of signal propagation is also observed in multi-layers network, when the signal transmission is affected by high-frequency disturbances. Network connections are found to be important for the propagation of weak signal. Besides that, the characteristics of high-frequency stimuli such as heterogeneity and frequency can also modulate the propagation of neural code through layers.  相似文献   

3.
于文婷  张娟  唐军 《物理学报》2017,66(20):200201-200201
神经元膜电位的受激发放在神经系统的信息传递中起着重要作用.基于一个受动态突触刺激的突触后神经元发放模型,采用数值模拟和傅里叶变换分析的方法研究了动态突触、神经耦合与时间延迟对突触后神经元发放的影响.结果发现:突触前神经元发放频率与Hodgkin-Huxley神经元的固有频率发生共振决定了突触后神经元发放的难易,特定频率范围内的电流刺激有利于神经元激发,动态突触输出的随机突触电流中这些电流刺激所占的比率在很大程度上影响了突触后神经元的发放次数;将突触后神经元换成神经网络后,网络中神经元之间的耦合可以促进神经元的发放,耦合中的时间延迟可以增强这种促进作用,但是不会改变神经耦合对神经元发放的促进模式.  相似文献   

4.
We investigate the propagation of spiking regularity in noisy feedforward networks (FFNs) based on FitzHugh-Nagumo neuron model systematically. It is found that noise could modulate the transmission of firing rate and spiking regularity. Noise-induced synchronization and synfire-enhanced coherence resonance are also observed when signals propagate in noisy multilayer networks. It is interesting that double coherence resonance (DCR) with the combination of synaptic input correlation and noise intensity is finally attained after the processing layer by layer in FFNs. Furthermore, inhibitory connections also play essential roles in shaping DCR phenomena. Several properties of the neuronal network such as noise intensity, correlation of synaptic inputs, and inhibitory connections can serve as control parameters in modulating both rate coding and the order of temporal coding.  相似文献   

5.
For a feedforward loop of oscillatory Hodgkin-Huxley neurons interacting via excitatory chemical synapses, we show that a great variety of spatiotemporal periodic firing patterns can be encoded by properly chosen communication delays and synaptic weights, which contributes to the concept of temporal coding by spikes. These patterns can be obtained by a modulation of the multiple coexisting stable in-phase synchronized states or traveling waves propagating along or against the direction of coupling. We derive explicit conditions for the network parameters allowing us to achieve a desired pattern. Interestingly, whereas the delays directly affect the time differences between spikes of interacting neurons, the synaptic weights control the phase differences. Our results show that already such a simple neural circuit may unfold an impressive spike coding capability.  相似文献   

6.
薛晓丹  王美丽  邵雨竹  王俊松 《物理学报》2019,68(7):78701-078701
神经元放电率自稳态是指大脑神经网络的放电率维持在相对稳定的状态.大量实验研究发现神经元放电率自稳态是神经电活动的重要特征,并且放电率自稳态是实现神经信息处理及维持正常脑功能的基础,因此放电率自稳态的研究是神经科学领域的重要科学问题.脑神经网络是一个高度复杂的动态系统,存在大量输入扰动信号及由于动态链接导致的参数摄动,因此如何建立并维持神经元放电率自稳态及其鲁棒性仍有待深入研究.反馈神经回路是皮层神经网络的典型连接模式,抑制性突触可塑性对神经元放电率自稳态具有重要的调控作用.本文通过构建包含抑制性突触可塑性的反馈神经回路模型对神经元放电率自稳态及其鲁棒性进行计算研究.结果表明:在抑制性突触可塑性的作用下,神经元放电率可自适应地跟踪目标放电率,从而取得放电率自稳态;在有外部输入干扰和参数摄动的情况下,神经元放电率具有良好的抗扰动性能,表明放电率自稳态具有很强的鲁棒性;理论分析揭示了抑制性突触可塑性学习规则是神经元放电率自稳态的神经机制;仿真分析进一步揭示了学习率及目标放电率对放电率自稳态建立过程具有重要影响.  相似文献   

7.
During active states of the brain neurons process their afferent currents with an effective membrane time constant much shorter than its value at rest. This fact, together with the existence of several synaptic time scales, determines to which aspects of the input the neuron responds best. Here we present a solution to the response of a leaky integrate-and-fire neuron with synaptic filters when long synaptic times are present, and predict the firing rate for all values of the synaptic time constant. We also discuss under which conditions this neuron becomes a coincidence detector.  相似文献   

8.
It is commonly believed that spike timings of a postsynaptic neuron tend to follow those of the presynaptic neuron. Such orthodromic firing may, however, cause a conflict with the functional integrity of complex neuronal networks due to asymmetric temporal Hebbian plasticity. We argue that reversed spike timing in a synapse is a typical phenomenon in the cortex, which has a stabilizing effect on the neuronal network structure. We further demonstrate how the firing causality in a synapse is perturbed by synchronous neural activity and how the equilibrium property of spike-timing dependent plasticity is determined principally by the degree of synchronization. Remarkably, even noise-induced activity and synchrony of neurons can result in equalization of synaptic efficacy.  相似文献   

9.
Hideo Hasegawa 《Physica A》2009,388(4):499-513
A population of firing neurons is expected to carry information not only by the mean firing rate but also by fluctuation and synchrony among neurons. In order to examine this possibility, we have studied responses of neuronal ensembles to three kinds of inputs: mean-, fluctuation- and synchrony-driven inputs. The generalized rate-code model including additive and multiplicative noise [H. Hasegawa, Phys. Rev. E 75 (2007) 051904] has been studied by direct simulations (DSs) and the augmented moment method (AMM) in which equations of motion for mean firing rate, fluctuation and synchrony are derived. Results calculated by the AMM are in good agreement with those by DSs. The independent component analysis (ICA) of our results has shown that mean firing rate, fluctuation (or variability) and synchrony may carry independent information in the population rate-code model. The input-output relation of mean firing rates is shown to have higher sensitivity for larger multiplicative noise, as recently observed in prefrontal cortex. A comparison is made between results obtained by the integrate-and-fire (IF) model and our rate-code model.  相似文献   

10.
D. Hansel  G. Mato 《Physica A》1993,200(1-4):662-669
A phase reduction formalism is applied to study various patterns of synchrony displayed by a heterogeneous network of Hodgkin-Huxley neurons. The phase diagram of this system is obtained. In particular, the fraction of frequency locked neurons is shown to be a non-monotonic function of the heterogeneity. A dynamical regime in which the neurons oscillate with a high degree of coherence but with dispersion of the firing rates is found.  相似文献   

11.
We study the influence of coupling strength and network topology on synchronization behavior in pulse-coupled networks of bursting Hindmarsh-Rose neurons. Surprisingly, we find that the stability of the completely synchronous state in such networks only depends on the number of signals each neuron receives, independent of all other details of the network topology. This is in contrast with linearly coupled bursting neurons where complete synchrony strongly depends on the network structure and number of cells. Through analysis and numerics, we show that the onset of synchrony in a network with any coupling topology admitting complete synchronization is ensured by one single condition.  相似文献   

12.
Noise can have a significant impact on the response dynamics of a nonlinear system. For neurons, the primary source of noise comes from background synaptic input activity. If this is approximated as white noise, the amplitude of the modulation of the firing rate in response to an input current oscillating at frequency omega decreases as 1/square root[omega] and lags the input by 45 degrees in phase. However, if filtering due to realistic synaptic dynamics is included, the firing rate is modulated by a finite amount even in the limit omega-->infinity and the phase lag is eliminated. Thus, through its effect on noise inputs, realistic synaptic dynamics can ensure unlagged neuronal responses to high-frequency inputs.  相似文献   

13.
Recent studies of cortical neurons driven by fluctuating currents revealed cutoff frequencies for action potential encoding of several hundred Hz. Theoretical studies of biophysical neuron models have predicted a much lower cutoff frequency of the order of average firing rate or the inverse membrane time constant. The biophysical origin of the observed high cutoff frequencies is thus not well understood. Here we introduce a neuron model with dynamical action potential generation, in which the linear response can be analytically calculated for uncorrelated synaptic noise. We find that the cutoff frequencies increase to very large values when the time scale of action potential initiation becomes short.  相似文献   

14.
We study the propagation of spike trains through one-dimensional chains of coupled neurons exhibiting subthreshold oscillations. We consider the existence of a synaptic delay that provides a time scale in addition to the ones given by the periods of the input train and of the subthreshold oscillations. These three time scales affect the evolution of the phase of the neural oscillators, preparing the state of the postsynaptic neuron for the presynaptic input, which can trigger a suprathreshold response according to that phase. In the case of pulsed chemical coupling, results from two coupled neurons help infer the success of the propagation through a larger chain. This situation exhibits a resonant behavior with respect to the period of the input spike train, by which successful propagation arises for certain values of the input period, irrespective of the delay. In the presence of additional electrical coupling via gap junctions, the synaptic delay starts to play a relevant role, and a second resonance appears with respect to that time scale.  相似文献   

15.
A two-layer backward propagation neural network was used for the determination of the modulation frequency of tonal signals from the firing patterns of single neurons located in the cochlear nuclei and the torus semicircularis of the grass frog (Rana t. temporaria). As an input of the neural network, a sum of several single responses of a neuron to an amplitude-modulated stimulus was used. The number of inputs corresponded to the number of the time readouts of the summarized response (usually 60), and the number of output elements corresponded to the number of modulation frequencies to be distinguished (from 3 to 15). In the case of a good synchronization of the input firing activity with the signal envelope, the classification was successful even if the training and classification were performed with the use of individual responses. An increase in the number of summed responses to 10–20 lead to a simplification of the training procedure. The results of the study were discussed in the context of the problem of the formation of periodicity detectors at the upper levels of the auditory pathway in vertebrates.  相似文献   

16.
We investigate the effects of channel noise on firing coherence of Watts-Strogatz small-world networks consisting of biophysically realistic HH neurons having a fraction of blocked voltage-gated sodium and potassium ion channels embedded in their neuronal membranes. The intensity of channel noise is determined by the number of non-blocked ion channels, which depends on the fraction of working ion channels and the membrane patch size with the assumption of homogeneous ion channel density. We find that firing coherence of the neuronal network can be either enhanced or reduced depending on the source of channel noise. As shown in this paper, sodium channel noise reduces firing coherence of neuronal networks; in contrast, potassium channel noise enhances it. Furthermore, compared with potassium channel noise, sodium channel noise plays a dominant role in affecting firing coherence of the neuronal network. Moreover, we declare that the observed phenomena are independent of the rewiring probability.  相似文献   

17.
Synchronous firing of neurons is thought to be important for information communication in neuronal networks. This paper investigates the complete and phase synchronization in a heterogeneous small-world chaotic Hindmarsh--Rose neuronal network. The effects of various network parameters on synchronization behaviour are discussed with some biological explanations. Complete synchronization of small-world neuronal networks is studied theoretically by the master stability function method. It is shown that the coupling strength necessary for complete or phase synchronization decreases with the neuron number, the node degree and the connection density are increased. The effect of heterogeneity of neuronal networks is also considered and it is found that the network heterogeneity has an adverse effect on synchrony.  相似文献   

18.
Guoyuan Qi 《中国物理 B》2021,30(12):120516-120516
The firing of a neuron model is mainly affected by the following factors:the magnetic field, external forcing current, time delay, etc. In this paper, a new time-delayed electromagnetic field coupled dual Hindmarsh-Rose neuron network model is constructed. A magnetically controlled threshold memristor is improved to represent the self-connected and the coupled magnetic fields triggered by the dynamic change of neuronal membrane potential for the adjacent neurons. Numerical simulation confirms that the coupled magnetic field can activate resting neurons to generate rich firing patterns, such as spiking firings, bursting firings, and chaotic firings, and enable neurons to generate larger firing amplitudes. The study also found that the strength of magnetic coupling in the neural network also affects the number of peaks in the discharge of bursting firing. Based on the existing medical treatment background of mental illness, the effects of time lag in the coupling process against neuron firing are studied. The results confirm that the neurons can respond well to external stimuli and coupled magnetic field with appropriate time delay, and keep periodic firing under a wide range of external forcing current.  相似文献   

19.
Synaptic waveforms, constructed from excitatory and inhibitory presynaptic Poisson trains, are presented to living and computational neurons. We review how the average output of a neuron (e.g., the firing rate) is set by the difference between excitatory and inhibitory event rates while neuronal variability is set by their sum. We distinguish neuronal variability from reproducibility. Variability quantifies how much an output measure is expected to vary; for example, the interspike interval coefficient of variation quantifies the typical range of interspike intervals. Reproducibility quantifies the similarity of neuronal outputs in response to repeated presentations of identical stimuli. Although variability and reproducibility are conceptually distinct, we show that, for ideal current source synapses, reproducibility is defined entirely by variability. For physiologically realistic conductance-based synapses, however, reproducibility is distinct from variability and average output, set by the Poisson rate and the degree of synchrony within the synaptic waveform.  相似文献   

20.
The transitions between waking and sleep states are characterized by considerable changes in neuronal firing. During waking, neurons fire tonically at irregular intervals and a desynchronized activity is observed at the electroencephalogram. This activity becomes synchronized with slow wave sleep onset when neurons start to oscillate between periods of firing (up-states) and periods of silence (down-states). Recently, it has been proposed that the connections between neurons undergo potentiation during waking, whereas they weaken during slow wave sleep. Here, we propose a dynamical model to describe basic features of the autonomous transitions between such states. We consider a network of coupled neurons in which the strength of the interactions is modulated by synaptic long term potentiation and depression, according to the spike time-dependent plasticity rule (STDP). The model shows that the enhancement of synaptic strength between neurons occurring in waking increases the propensity of the network to synchronize and, conversely, desynchronization appears when the strength of the connections become weaker. Both transitions appear spontaneously, but the transition from sleep to waking required a slight modification of the STDP rule with the introduction of a mechanism which becomes active during sleep and changes the proportion between potentiation and depression in accordance with biological data. At the neuron level, transitions from desynchronization to synchronization and vice versa can be described as a bifurcation between two different states, whose dynamical regime is modulated by synaptic strengths, thus suggesting that transition from a state to an another can be determined by quantitative differences between potentiation and depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号