首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
研究了用B掺杂替代A1对AB5型稀土贮氢合金相结构和电化学性能的影响.对M1Ni3.55Co0.75Mn0.4Al0.3-xBx(x=0,0.1,0.2,0.3)合金的研究结果表明:掺B后贮氢合金出现了CeCo4B第二相,导致贮氢合金的电化学容量下降;随B含量的增加和A1含量的减少,氢的扩散系数明显上升,合金的极化电阻减小,合金的高倍率放电性能和低温性能得到明显改善.  相似文献   

2.
研究了镍部分取代AB2型CeMnAl金属间化合物B侧Mn,Al形成的化学计量比合金的结构和电化学性能。XRD分析,SEM形貌观察和电化学性能测试结果表明:镍的部分取代使合金发生了相变化,形成了新相,CeMn1-x,A11-x,Ni2x(x=0.0,0.25,0.50和0.75)合金电极的电化学活性得到很大提高,298K时的放电容量从x=0时的17.93mAh·g^-1提高到x=0.75时的118.3mAh·g^-1,328K时的放电容量从x=0时的68.42mAh·g^-1提高到x=0.75时的216.1mAh·g^-1。合金的电化学P-C-T曲线表明:无Ni的CeMnAl合金几乎没有平衡氢压平台,随M取代量的增加,合金的平衡氢压平台斜率变小,宽度增大。  相似文献   

3.
研究了Ti1.0V1.1-xMr0.5Ni0.4Lax(x=0,0.05,0.1,0.15和0.2)贮氢金的相结构和电化学性能。结果表明,当无La替代时,合金主要含有BCC结构的固溶体相以及少量Laves相。随着La替代量的增加,该合金中Cl4型Laves相含量增加,并且出现了富镧相,说明镧的添加对合金的相组成产生了明显的影响。当La含量x=0.15时,合金具有最大放电容量Cmax=245.4mAh·g^-1;合金电极放电容量随温度升高而增大,当x=0.2,60℃时最大放电容量达到385mAh·g^-1。但倍率放电能力没有明显提高。  相似文献   

4.
研究了不同铸锭厚度(1~10mm)对薄壁铸造的铸态和退火态LPCNi3.55Co0.75Mn0.4Al0.3贮氢合金电化学性能的影响。结果发现:铸态LPCNi3.55Co0.75Mn0.4Al0.3合金的0.2C放电容量随着合金锭厚度的增加有增大的趋势。10mm厚铸态合金的活化性能优于其它厚度的合金,且在1C的放电容量和循环稳定性比在其它厚度的高。主要原因应归结为该厚度合金具有更大的晶胞体积和更小的晶格应力。退火态3mm LPCNi3.55Co0.75Mn0.4Al0.3合金的综合电化学性能比铸态更优异,6mm合金的循环稳定性和3~6mm合金的活化性能得到改善。主要原因应归结为晶格应力的极大释放以及Mn等元素偏析的改善。  相似文献   

5.
采用真空感应熔炼方法制备了La0.83Mg0.17Ni3.1Co0.3Al0.1和La0.63Gd0.2Mg0.17Ni3.2-xCo0.3Alx(x=0~0.4)贮氢合金,并在氩气气氛900℃进行退火处理。通过X射线衍射(XRD)、显微电子探针(EPMA)分析方法和电化学测试分析研究了Gd和Al元素对合金微观组织和电化学性能的影响。研究结果表明,该系列合金退火组织主要由Ce2Ni7/Gd2Co7型、Pr5Co19型、PuNi3型和CaCu5型相组成;Gd元素的加入使合金中CaCu5型相明显减少,Ce2Ni7型/Gd2Co7型相显著增加,x=0.1时其相丰度达到81.2%;随Al含量x不断增加,合金中CaCu5型相丰度逐渐增多,当x=0.1~0.2时,CaCu5型相丰度为4%~5%,x=0.4时,其相丰度达到66.65%。电化学测试分析表明,Gd和Al元素对合金电极活化性能影响不大,当x=0.1时,含Gd合金电极放电容量达到最大值391 mAh.g-1,随Al含量x进一步增加,合金电极放电容量降低。含Gd和加入适量的Al元素可使合金电极循环稳定性得到明显提高,当Al含量x=0.1,0.2时,经100次充放电循环后其电极容量保持率S100分别为93.7%和90.1%,其中La0.63Gd0.2Mg0.17Ni3.1Co0.3Al0.1合金具有最好的综合电化学性能。  相似文献   

6.
本文较为详细地介绍了研究稀土贮氢合金性能过程中几种常用的测试技术。在贮氢合金组织结构方面,应用XRD、SEM和金相测试技术,研究贮氢合金的相结构,通过有关公式计算合金晶粒尺寸,以及反映热处理工艺前后相结构、晶粒形貌、晶界的变化情况。在贮氢合金吸放氢机理方面,通过将贮氢合金粉制作成微电极,采用恒电位阶跃、交流阻抗、循环伏安电化学测试技术,研究稀土贮氢合金电极反应的动力学性能,计算合金电极的交换电流密度、氢扩散系数及固/液界面电荷传递电阻等参数;采用PCT测试仪,研究贮氢合金的储氢量、平衡氢压等性能。在贮氢合金电化学性能方面,通过采用模拟电池测试技术,研究贮氢合金的活化、放电容量、放电平台、循环等性能。  相似文献   

7.
研究了不同铸锭厚度(1~10mm)对薄壁铸造的铸态和退火态LPCN3.55Co0.75Mn0.4Al0.3-一种新型贮氢合金电化学性能的影响。结果发现:铸态LPCNi3.55Co0.75Mn0.4Al0.3合金的0.2C放电容量随着合金锭厚度的增加有增大的趋势。10mm厚铸态合金的活化性能优于其它厚度的合金,且在1C的放电容量和循环稳定性比在其它厚度高。主要原因应归结为该厚度合金具有更大的晶胞体积和更小的晶格应力。退火态3mm LPCNi3.55Co0.75Mn0.4Al0.3合金的综合电化学性能比铸态更优异,6mm合金的循环稳定性和3~6mm合金的活化性能得到改善。主要原因应归结为晶格应力的极大释放以及Mn等元素偏析的改善。  相似文献   

8.
用冷坩埚磁悬浮熔炼方法制备La0.5Mg0.5(Ni1-xCox)2.28(x=0.0~0.2)贮氢电极合金,采用SEM,EDS,XRD,P-C-T测试及三电极电化学性能测试研究合金的相成分、相结构、P-C-T曲线和电化学性能.EDS结合XRD分析表明,La0.5Mg0.5Ni2.28及La0.5Mg0.5(Ni0.85Co0.15)2.28合金主相均为MgSnCu4型的LaMgNi4相,还包括LaNi5和(La,Mg)Ni3相.P-C-T曲线显示,合金均有双放氢平台,合金的贮氢量由Co替代量x=0.0时的1.24%增大至极大值x=0.15时的1.27%.电化学性能测试表明,随Co含量增加,最大放电容量从329.0mAh·g-1(x=0.0)增大到337.5 mAh·g-1(x=0.15),合金活化性能及高倍率放电性能明显改善;循环稳定性无明显变化.  相似文献   

9.
用铸造及快淬工艺制备了低钴AB5型MmNi3.8Co0.4Mn0.6Al0.2Bx (x=0, 0.1, 0.2, 0.3, 0.4)贮氢合金, 分析测试了铸态及快淬态合金的微观结构与电化学性能, 研究了硼及快淬工艺对合金微观结构及电化学性能的影响. 结果表明, 铸态合金具有双相组织, 主相为CaCu5型相, 还有少量CeCo4B第二相, 第二相的相丰度随硼含量x的增加而增大. 对合金进行了不同淬速的快淬处理, 随淬速的增加, 合金中第二相的量减少. 快淬使合金的晶格参数略有增大. 快淬工艺对合金的电化学性能产生显著影响, 随淬速的增加, 合金的容量下降, 循环稳定性显著提高. 快淬使合金的活化性能降低, 但随着硼含量的增加, 活化性能、高倍率放电能力及放电电压特性均得到不同程度的改善.  相似文献   

10.
采用X射线衍射法研究了LaNi5 .1 5 ,La(NiSn) 5 .1 4 ,La(NiSnCo) 5 .1 2 ,La(NiSnMn) 5 .1 2 ,La(NiSnCoMnAl) 5 .1 0 5种AB5 型非化学计量贮氢合金的结构。发现主物相中并未产生第二物相 ,AB5 型贮氢合金中B原子数发生正偏移时 ,晶胞体积减小 ,当B侧含有取代元素时 ,这种变化更加明显。对于非化学计量贮氢合金而言 ,少量Sn取代Ni后 ,晶胞体积大大提高。Mn ,Co和Al的加入也会影响晶胞常数。Sn ,Co ,Mn ,Al均会降低贮氢合金放氢平台压力。  相似文献   

11.
添加元素对AB2型Laves相合金电化学性能的影响   总被引:3,自引:0,他引:3  
比较系统地研究了AB2型Laves相合金Zr0.9Ti0.1Ni0.1Mn0.7V0.3M0.1(M=None,Ni.Mn.V.Co.Cr.Al.Fe,Mo.Si.C.Zn,Cu和B)的相结构和电化学性能以及高温和低温放电性能等.结果表明.14种合金均具有六方C14型Laves相的主相晶体结构.同时,含有少量立方Cl5型Laves相和一些由Zr9Ni11及ZrNi组成的非Laves相;添加V和Mn可提高AB2合金的放电容量;添加B和Mn则显著提高了AB2合金的高倍率放电性能和低温放电容量;添加Al,C.Si和Co对合金电极的循环稳定性改善明显;而Mn.Ni.V.Fe.Cu.Mo和B等却不同程度地降低了循环稳定性;添加Si.Mo,V,Cr和Al可明显改善合金电极的自放电性能;添加Si.Cr.V可显著改善AB2合金电极的高温放电性能.讨论了各种添加元素影响合金性能的可能原因.  相似文献   

12.
研究了Pr替代La对La0.8-xPrxMg0.2Ni3.2Co0.4Al0.2(X=0~0.4)储氢合金相结构与电化学性能的影响。XRD及Rietveld全谱拟合方法分析表明,合金主要由PrsCo-9,Ce5Co-9及CaCu5型物相组成。随着Pr含量x值的增加,合金中A5B19型物相(Pr5Co19+Ce5Co19)逐渐增多,同时各物相的晶胞参数(a,c)和晶胞体积(y)均减小。电化学测试表明,x值的增加对合金电极的活化性能影响不大,但可显著提高合金电极的循环稳定性。合金的高倍率放电性能(HRD)随着x的增加呈增加趋势,在x=0.3时存在最大值(HRD900=89.6%);合金电极的HRD主要由合金电极表面的电荷迁移速率所控制。  相似文献   

13.
为了获得既具有较高电化学容量又具有良好循环稳定性的低钴AB5型贮氢合金,研究了Fe部分替代Cu对低钴AB5型贮氢合金相结构和电化学性能的影响.采用真空感应熔炼方法,制备了一系列含Cu和Fe的低钴AB5型贮氢合金LaNi3.55Mn0.35Co0.20Al0.20Cu0.85-xFex(x=0.10,0.20,0.25,0.40,0.60).粉末X射线衍射(XRD)分析表明,合金含有单一CaCu5型六方结构的LaNi5相,Fe部分替代Cu并没有改变合金的本体相结构,但随着Fe含量的增大,晶格参数a,c和晶胞体积V增大.电化学性能测试表明,随着x增加,合金的放电容量和高倍率放电能力降低,但是循环稳定性得到了显著提高.当x从0.10增加到0.60时,合金的200周循环稳定性(S200)从77.6%提高到89.9%.Fe替代Cu有利于提高合金的循环稳定性,这主要是随着Fe替代量增大,晶胞体积增大,晶格体积膨胀率明显减小,合金的抗粉化能力增强.  相似文献   

14.
本文较为详细地介绍了研究稀土贮氢合金性能过程中几种常用的测试技术.在贮氢合金组织结构方面,应用XRD、SEM和金相测试技术,研究贮氢合金的相结构,通过有关公式计算合金晶粒尺寸,以及反映热处理工艺前后相结构、晶粒形貌、晶界的变化情况.在贮氢合金吸放氢机理方面,通过将贮氢合金粉制作成微电极,采用恒电位阶跃、交流阻抗、循环伏安电化学测试技术,研究稀土贮氢合金电极反应的动力学性能,计算合金电极的交换电流密度、氢扩散系数及固/液界面电荷传递电阻等参数;采用PCT测试仪,研究贮氢合金的储氢量、平衡氢压等性能.在贮氢合金电化学性能方面,通过采用模拟电池测试技术,研究贮氢合金的活化、放电容量、放电平台、循环等性能.  相似文献   

15.
系统研究了Ti-47Al-xY(0,0.1,0.3,0.5,0.7,1.0%)合金的显微组织及室温拉伸性能。结果发现:Ti-47Al合金的晶粒尺寸和层片厚度均随着Y含量的增加而降低;当Y含量高于0.1%时,晶内弥散分布YAl2化合物的同时,YAl2开始在晶界处偏析,且随着Y含量的增加Y的晶界偏析越严重;力学拉伸表明,带有0.3%.0.5%Y的Ti-47Al合金有较好的拉伸性能。分析得知,富集Y的YAl2化合物的尺寸及分布对Ti-47Al合金的室温拉伸性能影响起着重要的作用。一方面,组织的细化和晶内细小的YAl2相有利于性能的改善,另一方面,在高Y含量的合金中(超过0.5%Y),晶界处大尺寸YAl2相的解理断裂使Ti-47Al合金提前失效,显著恶化Ti-47Al合金的拉伸性能。这两个方面的因素综合影响着Ti-47Al合金的性能。  相似文献   

16.
研究了以Ce,Nd和Pr部分替代LaNi(3.5)Co(0.8)Mn(0.4)Al(0.3)中的La后对合金电化学及储氢特性的影响。稀土含量的变化明显改变合金的电化学及储氢特性。Pr对合金的电化学性能影响小于Ce。Ce使合金的放电容量降低,并升高合金的氢分解压。随着Nd含量的增加,合金的放电容量降低。  相似文献   

17.
采用中频感应熔炼-快淬方法制备了La17Fe3Mn5Al2Ni73-xBx(x=0,1,3,5)储氢合金。结构分析表明,不含B的合金为双相结构,主相为LaNi5相,第二相为La2Ni7相,含B合金均由LaNi5相、La2Ni7相和La3Ni13B2相组成,且随着B含量的增加,LaNi5相和La2Ni7相减少,La3Ni13B2相逐渐增加。电化学测试表明,随着B含量的增加,合金的活化性能、最大放电容量不同程度下降,而循环稳定性有所改善。合金电极的倍率放电能力(HRD)随着B含量的增加呈先增大后减小的趋势,表明适量的B有利于提高合金的高倍率放电性能。合金电极的交换电流密度(I0)随着B含量的增加先增大后减小,而氢在合金中的扩散系数(D)则逐渐增大,表明合金的高倍率放电性能主要取决于合金表面的电荷转移能力。  相似文献   

18.
为了改善La-Mg-Ni-Co型贮氢合金电极材料的电化学循环稳定性,采用真空中频感应电炉熔炼的方法制备了La0.7Mg0.3(Ni0.85Co0.15)3.5合金,研究了CoO添加剂(添加量分别为0%,2.5%,5%和15%)对其电化学性能的影响。结果表明,当以机械混合的方式在铸态La0.7Mg0.3(Ni0.85Co0.15)3.5合金粉中添加5%CoO时,可使合金电极在高温、低温和室温时的放电容量及室温充放电循环寿命大幅度提高。电化学测试及X射线衍射(XRD)分析结果表明,CoO可能是通过促进La0.7Mg0.3(Ni0.85Co0.15)35合金中某个(些)相的电化学反应,及其本身在充放电过程中发生可逆电化学反应,改善La0.7Mg0.3(Ni0.85Co0.15)3.5合金电化学性能。  相似文献   

19.
研究了几种AB5非化学计量贮氢合金的电化学性能 ,及在低电流密度与高电流密度放电下取代元素对放电比容量、活化性能及循环寿命的影响。Sn ,Co,Mn的加入有利于提高合金的电化学贮氢容量 ,La(NiSn) 5.14 ,La(NiSnCo) 5.12 和La(NiSnMn) 5.12 具有相同的电化学贮氢容量与活化特性。尽管La(NiSn) 5.14 大电流放电性能优于La(NiSnCo) 5.12 和La(NiSnMn) 5.12 ,但其寿命短。Mn ,Co和Al可大大提高合金的使用寿命。La(NiSnCo) 5.12 被认为是一种理想的贮氢合金。  相似文献   

20.
采用感应熔炼方法制备了A2B7型La0.83-0.5x(Pr0.1Nd0.1Sm0.1Gd0.2)xMg0.17Ni3.1Co0.3Al0.1(x=0~1.66)储氢合金,并在He+Ar气氛和1 173 K下进行退火处理。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学方法,研究了混合稀土(Pr,Nd,Sm,Gd)替代La元素对合金物相结构和电化学性能的影响。合金相结构分析表明,混合稀土含量对合金组成和相结构有重要的影响,随混合稀土含量x的增加,合金中主相A2B7型(2H-Ce2Ni7型+3R-Gd2Co7型)相丰度逐渐增多,其中2H-Ce2Ni7型相丰度先增多后减少,3RGd2Co7型相丰度则逐渐增加,主相晶胞参数随x增加而减小。电化学结果表明,随混合稀土含量增加,放氢平台压逐渐升高,合金电极的最大放电容量和循环稳定性均呈先增大后减小的规律,其中x=0.4合金电极具有最高的电化学放电容量(389.8 mAh·g-1)和最佳的循环寿命(S100=91.30%);合金电极的高倍率放电性能(HRD)则随x的增加获得显著提高。适量的混合稀土替代量可显著改善合金电极的综合电化学性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号