首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-lying electronic transitions and photochemical reactions of a series of [((i)Pr-DAB)Pt(R)(2)] (where the co-ligand R = CH(3), CD(3), adme, neop, neoSi, C(triple bond)C(t)Bu, C(triple bond)CPh, Ph, Mes) compounds were studied using both experimental (electronic absorption and resonance Raman spectroscopy) and theoretical (density functional theory, DFT) techniques. The high-lying filled orbitals were revealed to have a significant co-ligand contribution in the case of alkyl complexes, while this contribution is predominant for the complexes with unsaturated co-ligands. Because the electronic transition removes electron density from the sigma(Pt-C) bond in the former complexes, it is best described as a metal-to-ligand charge transfer transition (MLCT) with partial sigma-bond-to-ligand charge transfer (SBLCT) character. Because the sigma(Pt-C) orbital is not involved in the HOMOs of the latter complexes, the low-lying transitions were characterized as mixed MLCT/L'LCT, where L'LCT stands for ligand-to-ligand charge transfer from the pi system of the unsaturated co-ligand to the pi((i)Pr-DAB) orbital. The alkyl complexes are photoreactive on visible light irradiation with Pt-C bond homolysis as the primary step. The efficiency of the photoreaction increases with increasing sigma donor strength of the alkyl ligand. The absolute quantum yield is quite low. The other complexes are virtually photostable, except when irradiated at relatively high energies.  相似文献   

2.
The X 2pi(g), 2sigma(g)+, and 2delta(g) states of AgCl2 have been studied through benchmark ab initio complete active space self-consistent field plus second-order complete active space multireference Moller-Plesset algorithm (CASSCF+CASPT2) and complete active space self-consistent field plus averaged coupled pair functional (CASSCF+ACPF) and density-functional theory (DFT) calculations using especially developed basis sets to study the transition energies, geometries, vibrational frequencies, Mulliken charges, and spin densities. The spin-orbit (SO) effects were included through the effective Hamiltonian formalism using the LambdaSSigma ACPF energies as diagonal elements. At the ACPF level, the ground state is 2pi(g) in contradiction with ligand-field theory, SCF, and large CASSCF; the adiabatic excitation energies for the 2sigma(g)+ and 2delta(g) states are 1640 and 18,230 cm(-1), respectively. The inclusion of the SO effects leads to a pure omega = 32(2pi(g)) ground state, a omega = 12 (66%2pi(g) and 34%2sigma(g)+) A state, a omega = 12 (34%2pi(g) and 66%2sigma(g)+) B state, a omega = 52(2delta(g))C state, and a omega = 32(99%2delta(g))D state. The X-A, X-B, X-C, and X-D transition energies are 485, 3715, 17 246, and 20 110 cm(-1), respectively. The B97-2, B3LYP, and PBE0 functionals overestimate by approximately 100% the X 2pi(g)-2sigma(g)+T(e) but provide a qualitative energetic ordering in good agreement with ACPF results. B3LYP with variable exchange leads to a 42% optimal Hartree-Fock exchange for transition energies but all equilibrium geometries get worsened. Asymptotic corrections to B3LYP do not provide improved values. The nature of the bonding in the X 2pi(g) state is very different from that of CuCl2 since the Mulliken charge on the metal is 1.1 while the spin density is only 0.35. DFT strongly delocalizes the spin density providing even smaller values of around 0.18 on Ag not only for the ground state, but also for the 2sigma(g)+ state.  相似文献   

3.
The excited states of CO adsorbed on the Pt(111) surface are studied using a time-dependent density functional theory formalism. To reduce the computational cost, electronic excitations are computed within a reduced single excitation space. Using cluster models of the surface, excitation energies are computed for CO in the on-top, threefold, and bridge binding sites. On adsorption, there is a lowering of the 5sigma orbital energy. This leads to a large blueshift in the 5sigma- -> pi(CO*) excitation energy for all adsorption sites. The 1pi and 4sigma orbital energies are lowered to a lesser extent, and smaller shifts in the corresponding excitation energies are predicted. For the larger clusters, pi* excitations at lower energies are observed. These transitions correspond to excitations to virtual orbitals of pi* character which lie below the pi* orbitals of gas phase CO. These orbitals are associated predominantly with the metal atoms of the cluster. The excitation energies are also found to be sensitive to changes in the adsorption geometry. The electronic spectrum of CO on Pt(111) is simulated and the assignment of the bands observed in experimental electron energy loss spectroscopy discussed.  相似文献   

4.
Periodic DFT and combined quantum mechanics/interatomic potential function (QM-pot) models were used to describe the interaction of CO with the Cu+ sites in FER. The CO stretching frequencies were calculated using omega(CO)(CCSD(T))/r(CO)(DFT) scaling method relating frequencies determined using a high-level quantum-chemical (coupled clusters) method for simple model carbonyls to CO bond lengths calculated using periodic DFT and QM-pot methods for the Cu+-zeolite system. Both periodic DFT and QM-pot models together with omega(CO)/r(CO) scaling describe the CO stretching dynamics with the "near spectroscopic accuracy", giving nu(CO) = 2156 cm(-1) in excellent agreement with experimental data. Calculations for various Cu+ sites in FER show that both types of Cu+ sites in FER (channel-wall sites and intersection sites) have the same CO stretching frequencies. Thus, the CO stretching frequencies are not site-specific in the CO/Cu+/FER system. The convergence of the results with respect to the model size was analyzed. When the same exchange-correlation functional is used the adsorption energies from periodic DFT and QM-pot are in good agreement (about 2 kcal/mol difference) but substantially larger than those of the experiment. The adsorption energy calculated with the B3LYP functional agrees with available experimental data. The overestimation of the adsorption energy in DFT calculations (periodic or QM-pot) is related to a red-shift of the CO stretching mode, both result from an underestimation of the HOMO(5sigma)-LUMO(2pi) gap of CO and the consequent overestimation of the Cu(+)(d)-CO(2pi*) back-donation. For the adsorption energy, this can be overcome by the use of hybrid B3LYP exchange-correlation functional. For the frequency calculations, the DFT problem can be overcome by the use of the omega(CO)(CCSD(T))/r(CO)(DFT) correlation.  相似文献   

5.
The chemisorption of NO on clean Pt(111), Rh/Pt(111) alloy, and Pd/Pt(111) alloy surfaces has been studied by first principles density functional theory (DFT) computations. It was found that the surface compositions of the surface alloys have very different effects on the adsorption of NO on Rh/Pt(111) versus that on Pd/Pt(111). This is due to the different bond strength between the two metals in each alloy system. A complex d-band center weighting model developed by authors in a previous study for SO2 adsorption is demonstrated to be necessary for quantifying NO adsorption on Pd/Pt(111). A strong linear relationship between the weighted positions of the d states of the surfaces and the molecular NO adsorption energies shows the closer the weighted d-band center is shifted to the Fermi energy level, the stronger the adsorption of NO will be. The consequences of this study for the optimized design of three-way automotive catalysts, (TWC) are also discussed.  相似文献   

6.
The near-edge x-ray absorption fine structure of benzene in the gas phase and adsorbed on the Au(111) and Pt(111) surfaces is studied with time dependent density functional theory. Excitation energies computed with hybrid exchange-correlation functionals are too low compared to experiment. However, after applying a constant shift the spectra are in good agreement with experiment. For benzene on the Au(111) surface, two bands arising from excitation to the e(2u)(pi(*)) and b(2g)(pi(*)) orbitals of benzene are observed for photon incidence parallel to the surface. On Pt(111) surface, a broader band arises from excitation to benzene orbitals that are mixed with the surface and have both sigma(*)(Pt-C) and pi(*) characters.  相似文献   

7.
Infrared data in the nu(CO) region (1800-2150 cm(-1), in acetonitrile at 298 K) are reported for the ground (nu(gs)) and polypyridyl-based, metal-to-ligand charge-transfer (MLCT) excited (nu(es)) states of cis-[Os(pp)2(CO)(L)](n)(+) (pp = 1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy); L = PPh3, CH(3)CN, pyridine, Cl, or H) and fac-[Re(pp)(CO)3(4-Etpy)](+) (pp = phen, bpy, 4,4'-(CH3)2bpy, 4,4'-(CH3O)2bpy, or 4,4'-(CO2Et)2bpy; 4-Etpy = 4-ethylpyridine). Systematic variations in nu(gs), nu(es), and Delta(nu) (Delta(nu) = nu(es) - nu(gs)) are observed with the excited-to-ground-state energy gap (E(0)) derived by a Franck-Condon analysis of emission spectra. These variations can be explained qualitatively by invoking a series of electronic interactions. Variations in dpi(M)-pi(CO) back-bonding are important in the ground state. In the excited state, the important interactions are (1) loss of back-bonding and sigma(M-CO) bond polarization, (2) pi(pp*-)-pi(CO) mixing, which provides the orbital basis for mixing pi(CO)- and pi(4,4'-X(2)bpy)-based MLCT excited states, and (3) dpi(M)-pi(pp) mixing, which provides the orbital basis for mixing pipi- and pi(4,4'-X(2)bpy*-)-based MLCT states. The results of density functional theory (DFT) calculations on the ground and excited states of fac-[Re(I)(bpy)(CO)3(4-Etpy)](+) provide assignments for the nu(CO) modes in the MLCT excited state. They also support the importance of pi(4,4'-X2bpy*-)-pi(CO) mixing, provide an explanation for the relative intensities of the A'(2) and A' ' excited-state bands, and provide an explanation for the large excited-to-ground-state nu(CO) shift for the A'(2) mode and its relative insensitivity to variations in X.  相似文献   

8.
Reaction kinetics studies were conducted for the conversions of ethanol and acetic acid over silica-supported Pt and Pt/Sn catalysts at temperatures from 500 to 600 K. Addition of Sn to Pt catalysts inhibits the decomposition of ethanol to CO, CH4, and C2H6, such that PtSn-based catalysts are active for dehydrogenation of ethanol to acetaldehyde. Furthermore, PtSn-based catalysts are selective for the conversion of acetic acid to ethanol, acetaldehyde, and ethyl acetate, whereas Pt catalysts lead mainly to decomposition products such as CH4 and CO. These results are interpreted using density functional theory (DFT) calculations for various adsorbed species and transition states on Pt(111) and Pt3Sn(111) surfaces. The Pt3Sn alloy slab was selected for DFT studies because results from in situ (119)Sn M?ssbauer spectroscopy and CO adsorption microcalorimetry of silica-supported Pt/Sn catalysts indicate that Pt-Sn alloy is the major phase present. Accordingly, results from DFT calculations show that transition-state energies for C-O and C-C bond cleavage in ethanol-derived species increase by 25-60 kJ/mol on Pt3Sn(111) compared to Pt(111), whereas energies of transition states for dehydrogenation reactions increase by only 5-10 kJ/mol. Results from DFT calculations show that transition-state energies for CH3CO-OH bond cleavage increase by only 12 kJ/mol on Pt3Sn(111) compared to Pt(111). The suppression of C-C bond cleavage in ethanol and acetic acid upon addition of Sn to Pt is also confirmed by microcalorimetric and infrared spectroscopic measurements at 300 K of the interactions of ethanol and acetic acid with Pt and PtSn on a silica support that had been silylated to remove silanol groups.  相似文献   

9.
The metal-ligand bonds of the title compounds have been investigated with the help of an energy partitioning analysis at the DFT level. It was found that the attractive orbital interactions between Fe and ER in (CO)(4)Fe-ER arise mainly from Fe <-- ER sigma donation. Only the boron diyl complexes (CO)(4)Fe-BR have significant contributions by Fe --> ER pi back-donation, but the Fe <-- BR sigma-donation remains the dominant orbital interaction term. The relative contributions of Fe-ER sigma donation and pi back-donation are only slightly altered when R changes from a good pi donor to a poor pi donor. Electrostatic forces between the metal fragment and the diyl ligand are always attractive, and they are very strong. They arise from the attraction between the local negative charge concentration at the overall positively charged donor atom E of the Lewis base ER and the positive charge of the iron nucleus. Electrostatic interactions and covalent interactions in (CO)(4)Fe-ER complexes have a similar strength when E is Al--Tl and when R is a good pi donor substituent. The Fe-BR bonds of the boron carbonyldiyl complexes have a significantly higher ionic character than the heavier group-13 analogues. Weak pi donor substituents R enhance the ionic character of the (CO)(4)Fe-ER bond. The metal-ligand bonds in the homoleptic complexes Fe(EMe)(5) and Ni(EMe)(4) have a higher ionic character than in (CO)(4)Fe-ER. The contribution of the TM --> ER pi back-donation to the Delta E(orb) term becomes clearly higher and contributes significantly to the total orbital interactions in the homoleptic complexes where no other pi acceptor ligands are present. The ligand BMe is nearly as strong a pi acceptor in Fe(BMe)(5) as CO is in Fe(CO)(5).  相似文献   

10.
In order to assess the accuracy of wave-function and density functional theory (DFT) based methods for excited states of the uranyl(VI) UO2(2+) molecule excitation energies and geometries of states originating from excitation from the sigma(u), sigma(g), pi(u), and pi(g) orbitals to the nonbonding 5f(delta) and 5f(phi) have been calculated with different methods. The investigation included linear-response CCSD (LR-CCSD), multiconfigurational perturbation theory (CASSCFCASPT2), size-extensivity corrected multireference configuration interaction (MRCI) and AQCC, and the DFT based methods time-dependent density functional theory (TD-DFT) with different functionals and the hybrid DFTMRCI method. Excellent agreement between all nonperturbative wave-function based methods was obtained. CASPT2 does not give energies in agreement with the nonperturbative wave-function based methods, and neither does TD-DFT, in particular, for the higher excitations. The CAM-B3LYP functional, which has a corrected asymptotic behavior, improves the accuracy especially in the higher region of the electronic spectrum. The hybrid DFTMRCI method performs better than TD-DFT, again compared to the nonperturbative wave-function based results. However, TD-DFT, with common functionals such as B3LYP, yields acceptable geometries and relaxation energies for all excited states compared to LR-CCSD. The structure of excited states corresponding to excitation out of the highest occupied sigma(u) orbital are symmetric while that arising from excitations out of the pi(u) orbitals have asymmetric structures. The distant oxygen atom acquires a radical character and likely becomes a strong proton acceptor. These electronic states may play an important role in photoinduced proton exchange with a water molecule of the aqueous environment.  相似文献   

11.
一氧化碳分子在Pt/t-ZrO2(101)表面的吸附性质   总被引:2,自引:0,他引:2  
运用广义梯度密度泛函理论(GGA-PW91)结合周期平板模型方法,研究了CO分子在完整与Pt负载的四方ZrO2(101)表面的吸附行为.结果表明:表面第二层第二氧位和表面第二桥位分别为CO分子和Pt原子在完整ZrO2(101)表面的稳定吸附位,且覆盖度为0.25ML(monolayer)时均为稳定吸附构型,吸附能分别为56.2和352.7kJ·mol-1.CO分子在负载表面的稳定吸附模式为C-end吸附,吸附能为323.8kJ·mol-1.考察了CO分子在负载表面吸附前后的振动频率、态密度和轨道电荷布居分析,并与CO分子和Pt原子在ZrO2表面的结果进行比较.结果表明,C端吸附CO分子键长为0.1161nm,与自由的和吸附在ZrO2表面后的CO相应值(0.1141和0.1136nm)相比伸长.吸附后C―O键伸缩振动频率为2018cm-1,与自由CO分子相比发生红移;吸附后CO带部分正电荷,电子转移以Pt5dCO2π的π反馈机理占主导地位.  相似文献   

12.
Some alkyl and aryl isonitriles, considered as CO analogue sigma-donor and pi-acceptor ligands in transition metal chemistry, were studied by means of HeI photoelectron spectroscopy and electron transmission spectroscopy, in order to evaluate their donor-acceptor properties from the measured ionization energies (IE) and vertical electron attachment energies (VAE). The investigated molecules were 2-propyl, 1-butyl, tert-butyl, 1-pentyl, cyclohexyl, 2,6-dimethylphenyl, 4-methoxyphenyl and 4-chorophenyl isonitrile. By interpreting the spectra on the basis of literature data and quantum chemical calculations, the spectral features associated with the molecular orbitals mainly involved in coordination and back-donation were identified. The results show that the IE (10.62-10.95 eV) of the sigma electron pair (n(c)) responsible for the sigma-donor capability is substantially lower than that of CO. The VAEs of the empty pi* orbitals involved in the d/pi* back-donation indicate that aryl isonitriles are better acceptors (VAE <0.3 eV) than their aliphatic counterparts (VAE >2.7 eV). In the case of aryl derivatives, the pi-donor ability could also play some role in metal-ligand bonding (IE 8.74-9.34 eV). Isonitrile coordination characteristics are also compared with those of CO, N(2) and CH(3)CN.  相似文献   

13.
Zinc carbonyls are extremely rare. Here we report experimental and theoretical evidence of unprecedented zinc tricarbonyl, Zn(CO)3, the next member of the series of 18-electron metal carbonyls Cr(CO)6 --> Fe(CO)5 --> Ni(CO)4, whereas there is no evidence for the formation of the zinc mono- and dicarbonyls Zn(CO)n (n = 1, 2). DFT calculations predict that the Zn(CO)3 molecule has a singlet ground state with D3h symmetry. The formation of Zn(CO)3 involves 4s --> 4p promotion of the Zn atom, which increases the Zn-CO bonding by decreasing the sigma repulsion and significantly increasing the Zn 4sp hybrid orbitals --> CO pi* back-donation.  相似文献   

14.
Density functional theory periodic slab calculations were carried out for CO adsorption on a series of Mo modified Pt(111) surfaces to provide an insight into the interaction between CO and doped metal surface, an important issue in CO oxidation as well as in promotion and poisoning effects of catalysis. The modification of adsorption properties with respect to those of adsorption on the pure Mo(110) and Pt(111) is described in terms of changes in the adsorption energies, adsorption sites and vibrational properties occurring upon alloying. We believe that the present DFT calculations can provide important information into optimal alloy composition for CO-tolerance, which is not easily obtained by experimental methods.  相似文献   

15.
张伟  夏广杰  王阳刚 《催化学报》2022,43(1):167-176
直接甲醇燃料电池(DMFC)可以将甲醇的化学能转化为电能.甲醇在室温下是一种液体,很容易运输和低风险储存.在常用燃料中,甲醇热值较高且价格便宜,其单位价格热值甚至高于汽油.更重要的是,甲醇可以通过二氧化碳催化加氢制得.因此可以将可再生能源转化为氢气,并高效地存储在甲醇分子中.而燃料电池消耗甲醇后,产物只有二氧化碳和无污...  相似文献   

16.
Ab initio based multireference configuration interaction calculations are carried out for SnS and its monopositive ion using effective core potentials. Potential energy curves and spectroscopic constants of the low-lying states of SnS and SnS+ are computed. The ground-state dissociation energies of the neutral and ionic species are about 4.71 and 2.86 eV, respectively which compare well with the available thermochemical data. The effect of d-electron correlation on the spectroscopic constants of a few low-lying states has been studied. The spin-orbit interaction has also been included to investigate its effect on the spectroscopic properties of both SnS and SnS+. Dipole moment and transition moment curves are also constructed as a function of the bond length. Transition probabilities of some dipole-allowed and spin-forbidden transitions are studied. Radiative lifetimes of a few low-lying states are estimated. The E1sigma+-X1sigma+ transition of SnS is predicted to be the strongest one. The components of the A2sigma(+)(1/2)-X2(2)pi(1/2) transition with parallel and perpendicular polarization are separately analyzed. The vertical ionization energies of the ground-state SnS to the ground and low-lying excited states of the monopositive ion are calculated.  相似文献   

17.
采用密度泛函理论(dFT)考察了Pt(100)、(110)、(111)三种表面氢原子的吸附行为, 计算了覆盖度为0.25 ML时氢原子在Pt 三种表面和M-Pt(111)双金属(M=Al, Fe, Co, Ni, Cu, Pd)上的最稳定吸附位、表面能以及吸附前后金属表面原子层间弛豫情况. 分析了氢原子在不同双金属表面吸附前后的局域态密度变化以及双金属表面d 带中心偏离费米能级的程度并与氢吸附能进行了关联. 计算结果表明, 在Pt(100), Pt(110)和Pt(111)表面, 氢原子的稳定吸附位分别为桥位、短桥位和fcc 穴位. 三种表面中以Pt(111)的表面能最低, 结构最稳定. 氢原子在不同M-Pt(111)双金属表面上的最稳定吸附位均为fcc 穴位, 其中在Ni-Pt 双金属表面的吸附能最低, Co-Pt 次之. 表明氢原子在Ni-Pt 和Co-Pt 双金属表面的吸附最稳定. 通过对氢原子在M-Pt(111)双金属表面吸附前后的局域态密度变化的分析, 验证了氢原子吸附能计算结果的准确性. 掺杂金属Ni、Co、Fe 的3d-Pt(111)双金属表面在吸附氢原子后发生弛豫, 第一层和第二层金属原子均不同程度地向外膨胀. 此外, 3d金属的掺入使得其对应的M-Pt(111)双金属表面d带中心与Pt 相比更靠近费米能级, 吸附氢原子能力增强, 表明3d-Pt系双金属表面有可能比Pt具有更好的脱氢活性.  相似文献   

18.
Methanol was used as a probe molecule to examine the reforming activity of oxygenates on NiPt(111) and CoPt(111) bimetallic surfaces, utilizing density functional theory (DFT) modeling, temperature-programmed desorption, and high-resolution electron energy loss spectroscopy (HREELS). DFT results revealed a correlation between the methanol and methoxy binding energies and the surface d-band center of various NiPt(111) and CoPt(111) bimetallic surfaces. Consistent with DFT predictions, increased production of H2 and CO from methanol was observed on a Ni surface monolayer on Pt(111), designated as Ni-Pt-Pt(111), as compared to the subsurface monolayer Pt-Ni-Pt(111) surface. HREELS was used to verify the presence and subsequent decomposition of methoxy intermediates on NiPt(111) and CoPt(111) bimetallic surfaces. On Ni-Pt-Pt(111) the methoxy species decomposed to a formaldehyde intermediate below 300 K; this species reacted at approximately 300 K to form CO and H2. On Co-Pt-Pt(111), methoxy was stable up to approximately 350 K and decomposed to form CO and H2. Overall, trends in methanol reactivity on NiPt(111) bimetallic surfaces were similar to those previously determined for ethanol and ethylene glycol.  相似文献   

19.
The platinum group metals (Pt, Ir and Ru) and the carbide-derived carbon support with the very high specific surface area were used to synthesise the low noble metal loading Pt-C, IrPt-C and RuPt-C alloy catalysts. The alloying of the platinum group metals in the studied catalysts was proved by the several independent physical characterization methods like: the X-ray diffraction, time of flight secondary ion mass-spectrometry, X-ray photoelectron spectroscopy, scanning and transmission electron microscopy. The electrocatalytic activity toward oxygen reduction reaction of the synthesised catalysts in an alkaline solution was studied and compared with the commercially available Pt-Vulcan. The combined and detail approach using the transmission electron microscopy and inductively coupled plasma mass spectrometry for estimation of the surface area of metal particles is provided. The noticeably higher calculated mass corrected and specific kinetic current density values for Pt-C catalyst were established. For IrPt-C and RuPt-C alloy catalysts, mass corrected current density values are comparable with the commercial Pt-Vulcan. The specific kinetic current density values increase in the following sequence: RuPt-C < IrPt-C < Pt-Vulcan < Pt-C.  相似文献   

20.
Employing the coupled-cluster approach and correlation consistent basis sets of triple and quadruple cardinality, we have investigated the electronic structure and bonding of the HC(N2)x(+) and HC(CO)x(+), x = 1, 2, molecular cations. We report geometries, binding energies and potential energy profiles. The ground states of HC(N2)+, HC(CO)+ and HC(N2)2(+), HC(CO)2(+) are of 3sigma- and 1A1 symmetries, respectively. All four charged species are well bound with binding energies ranging from 81 [HC(N2)+ (X3sigma-) --> CH+(a3pi) + N2(X1sigma(g)+)] to 178 [HC(CO)2(+)(X1A1) --> CH+(X1sigma+) + 2CO(X1sigma+)] kcal/mol. It is our belief that the X1A1 states of HC(N2)2(+) and HC(CO)2(+) are isolable in the solid state if combined with appropriate counteranions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号