首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The effect of six organophosphorus compounds, including Pyrovatex CP (PCP), diammonium phosphate (DAP), phosphoric acid (PA), tributyl phosphate (TBP), triallyl phosphate (TAP) and triallyl phosphoric triamide (TPT) on the flame retardancy of cotton cellulose was studied. PCP, PA, and DAP are more efficient compared with the other three compounds in improving the limiting oxygen index (LOI) of cotton. The effectiveness of these compounds was investigated using scanning electron microscope (SEM) images of char formed after LOI tests, char content, activation energy of decomposition and heat of combustion data. SEM images showed that DAP, PCP and PA chars maintain the surface morphology during the burning process, which might be due to the formation of a protective layer or crosslinking effect. PA, PCP, and DAP treated fabrics have a higher activation energy of decomposition, higher char content and lower heat of combustion.  相似文献   

2.
This research explores the structural effect of phosphoramidates as flame retardants (FRs) for cotton cellulose. Flame retardant (FR) and thermal decomposition actions of phosphate such as triethyl phosphate (TEP), primary phosphoramidate such as diethyl phosphoramidate (DEPA) and secondary phosphoramidates such as phosphoramidic acid, N(2-hydroxy ethyl) diethylester (PAHEDE), diethyl ethyl phosphoramidate (DEEP) and diethyl 2-methoxyethylphosphoramidate (DEMEP) on cotton cellulose were investigated. Limiting oxygen index (LOI) of treated cotton cellulose showed that all phosphoramidates exhibited better flame retardant properties as compared to TEP. Secondary phosphoramidate PAHEDE had better flame retardant properties as compared to DEMEP and DEEP which indicate that flame retardancy of secondary phosphoramidates is structure related. Test performed on pyrolysis combustion flow calorimeter (PCFC) for treated cellulose showed higher reduction in heat of combustion for efficient FRs (PAHEDE, DEPA). Evolved gas analysis using thermogravimetric analyzer-Fourier transform infrared spectroscopy (TGA-FTIR) and thermogravimetric analyzer-mass spectrometer (TGA-MS) of treated cellulose showed that phosphoramidates could catalyze the dehydration and char formation of cellulose at a lower temperature. The enhanced flame retardant action of phosphoramidate may be due to the catalytic thermal decomposition of the phosphoramidate structure to produce acidic intermediates which could react with cellulose to alter its thermal decomposition.  相似文献   

3.
Thermal Degradation of Cotton Cellulose   总被引:6,自引:0,他引:6  
The thermal degradation of cotton cellulose treated with chemical mixtures containing P and N was studied by thermal analysis, infrared spectroscopy, Char yield and limiting-oxygen-index (LOI). Our experiments demonstrated the following facts. The temperatures and activation energies of pyrolysis were lower for cotton cellulose treated with flame retardants than those for untreated samples and the values of Char yield and LOI were greater for treated cotton than those for untreated one. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
A novel flame retardant diethyl 4‐methylpiperazin‐1‐ylphosphoramidate (CN‐3) containing phosphorous and nitrogen was prepared. Its chemical structure was confirmed by nuclear magnetic resonance (1H‐, 13C‐, and 31P‐NMR), Fourier transform infrared spectroscopy, and elemental analysis. Print cloth and twill fabrics were treated with CN‐3 to achieve different levels of add‐on (7–22 wt% add‐ons for print cloth and 3–18 wt% add‐ons for twill). Thermogravimetric analysis, vertical flame test, and limiting oxygen index (LOI) were performed on the treated cotton fabrics and showed promising results. When the treated print cloth and twill fabric samples were tested using the vertical flame test (ASTM D6413‐08), we observed that the ignited fabrics self‐extinguished and left behind a streak of char. Treated higher add‐ons fabrics were neither consumed by flame nor produced glowing ambers upon self‐extinguishing. LOI (ASTM 2863–09) was used to determine the effectiveness of the flame retardant on the treated fabrics. LOI values increased from 18 vol% oxygen in nitrogen for untreated print cloth and twill fabrics to maximum of 28 and 31 wt% for the highest add‐ons of print cloth and twill, respectively. The results from cotton fabrics treated with CN‐3 demonstrated a higher LOI value as well as a higher char yield because of the effectiveness of phosphorus and nitrogen as a flame retardant for cotton fabrics. Furthermore, FT‐IR and SEM were used to characterize the chemical structure on the treated fabrics as well as the surface morphology of char areas of treated and untreated fabrics. Published 2012. This article is a US Government work and is in the public domain in the USA.  相似文献   

5.
Acrylic nanocomposite and flame retardant coatings with different acrylic polymers were prepared. The effect of molecular structure and molecular weight of acrylic resins and nanocomposite with nano-SiO2 on the interaction and char formation of ammonium polyphosphate-dipentaerythritol-melamine (APP-DPER-MEL) coating was investigated using differential thermal analysis (DTA), thermogravimetry (TG), Limiting Oxygen Index (LOI), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and fire protection test. The interaction of APP, DPER, MEL and 3F-1 acrylic resin led to the formation of intumescent coherent char at 300-450 °C. Owing to low molecular weight and lack of benzene rings, F-963 acrylic resin decomposed at lower temperature than APP, and hence their endothermic interaction was destroyed. The well-distributed nano-SiO2 particles in acrylic nanocomposite could modify char formation and anti-oxidation of char structure at high temperature. It is noted that the fire protection properties of nanocoating with acrylic nanocomposite were better than those of flame retardant coatings with conventional acrylic resins.  相似文献   

6.
The economic and environmentally friendly flame‐retardant compound, tetramethyl (6‐chloro‐1,3,5‐triazine‐2,4‐diyl)bis(oxy)bis(methylene) diphosphonate ( CN‐1 ), was synthesized by a simple two‐step procedure from dimethyl phosphate, and its chemical structure was characterized by 1H, 13C, and 31P nuclear magnetic resonance and gas chromatography mass spectroscopy. Using the traditional pad–dry–cure method, we obtained several different add‐ons (wt%) by treating cotton twill fabric with flame retardant ( CN‐1 ). Thermogravimetric analysis, in an air and nitrogen atmosphere, of the modified cotton showed that decomposition occurred ~230°C with 16% residue weight char yield at 600°C, indicating high thermal stability for all treated levels. Limiting oxygen index (LOI) and the vertical flammability test were employed to determine the effectiveness of the flame‐retardant treatments on the fabrics. LOI values increased from ~18 vol% oxygen in nitrogen for untreated fabric to maximum of 34 vol% for the highest treatment level. Fabrics with higher levels of flame retardant also easily passed the vertical flammability test. Furthermore, Fourier transform infrared and scanning electron microscopy were utilized to characterize the chemical structure as well as the surface morphology of the flame‐retardant treated twill fabrics, including char area and the edge between unburned fabric and char area. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
This study showed that greige cotton nonwoven fabric can effectively be flame retardant by applying the phosphorus of diammonium phosphate (DAP) as low as 0.8 wt% with the addition of urea. At such a low content of phosphorus, the char length and limiting oxygen index (LOI) were continuously decreased and increased, respectively, as the concentration of urea increased. The effect of urea additive on the thermal decomposition of flame retardant greige cotton nonwoven fabric was investigated by thermogravimetry, ATR-FTIR, XRD, 1H → 13C CP/MAS NMR, and SEM. The results indicated that, upon heating, urea not only facilitated the phosphorylation reaction of DAP but also introduced carbamate groups into cellulose to decrease the degree of crystallinity prior to the decomposition of the crystalline cellulose. Compared with DAP treatment alone, the addition of urea accelerated the decomposition of glycosyl units, which resulted in a slight increase of weight loss and decrease of char yield. The char morphology observed after LOI tests indicates that urea released nonflammable gases, which blew the carboneous char layer to protect the underlying substrate.  相似文献   

8.
A novel environmentally friendly flame-retardant compound, diethyl 3-(triethoxysilanepropyl) phosphoramidate (DTP) was synthesized via a simple one-step procedure with good yield and characterized by FT-IR and 1H-NMR, 31P-NMR and 29Si-NMR. The synthesized compound was coated onto cotton fabrics with different levels of add-ons (5–17 mass%) using the traditional pad-dry-cure method. SEM and XPS were conducted to characterize the surfaces of the coated cotton fabrics. The XPS results showed that DTP was attached to cotton through covalent bond. Cone calorimeter test showed that the cotton fabric treated with DTP became less flammable due to the lower HRR, THR and CO2/CO ratio. The modified cotton fabrics exhibited efficient flame retardancy, which was evidenced by limiting oxygen index (LOI) and vertical flammability test. Cotton fabrics treated with DTP in 5–17 mass% add-ons had high LOI values of 23–32%. Thermogravimetric analysis results show that the usage of DTP promotes degradation of the cotton fabrics and catalyzes its char formation.  相似文献   

9.
Brown cotton fibers (SA-1 and MC-BL) studied were inferior to a white cotton fiber (Sure-Grow 747) in fiber quality, i.e., a shorter length, fewer twists, and lower crystallinity, but showed superior thermal resistance in thermogravimetric, differential thermogravimetric, and microscale combustion calorimetric (MCC) analyses. Brown cotton fibers yielded 11–23 % smaller total heat release and 20–40 % greater char. Washing fibers in water and a 1 % NaOH solution showed that rich natural inorganic components and the condensed tannins present in brown cotton are responsible for the unusual thermal property. The loss of inorganics from white cotton during a water wash increased the thermal decomposition temperature of cellulose, resulting in no char yield. However, the stronger binding of metal ions for brown cotton as well as its dominant adsorption of sodium ions after a 1 % NaOH wash facilitated the low-temperature thermal-reaction route; the sodium content showed a significant negative correlation with the heat release capacity of the fiber. Condensed tannins greatly enhanced the adsorption of sodium ions to the fiber and exhibited inherent thermal stability. The limiting oxygen indices (LOI) calculated from the MCC parameters indicated the slower burning characteristic of brown cotton, and its LOI was further increased upon adsorption of sodium ions.  相似文献   

10.
In this study, a series of ultraviolet (UV)‐curable organic–inorganic hybrid coating materials containing phosphorus were prepared by sol–gel approach from acrylate end‐capped urethane resin, acrylated phenyl phosphine oxide oligomer (APPO), and inorganic precursors. TEOS and MAPTMS were used to obtain the silica network and Ti:acac complex was employed for the formation of the titania network in the hybrid coating systems. Coating performance of the hybrid coating materials applied on aluminum substrates was determined by the analysis techniques, such as hardness, gloss, impact strength, cross‐cut adhesion, taber abrasion resistance, which were accepted by international organization. Also, stress–strain test of the hybrids was carried out on the free films. These measurements showed that all the properties of the hybrids were enhanced effectively by gradual increase in sol–gel precursors and APPO oligomer content. The thermal behavior of the hybrid coatings was investigated by thermogravimetric analysis (TGA) analysis. The flame retardancy of the hybrid materials was examined by the limiting oxygen index (LOI); the LOI values of pure organic coating (BF) increased from 31 to 44 for the hybrid materials containing phosphorus (BF‐P:40/Si:10). The data from thermal analysis and LOI showed that the hybrid coating materials containing phosphorus have higher thermal stability and flame resistance properties than the organic polymer. Besides that, it was found that the double bond conversion values for the hybrid mixtures were adequate in order to form an organic matrix. The polycondensation reactions of TEOS and MAPTMS compounds were also investigated by 29Si‐NMR spectroscopy. SEM studies of the hybrid coatings showed that silica/titania particles were homogenously dispersed through the organic matrix. In addition, it was determined that the hybrid material containing phosphorus and silica showed fibrillar structure. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
The progress of flame retarded polymer nanocomposites and coatings in China over the past decades are described in this review. Emphasis on flammability performance of polymer nanocomposites containing nanofillers, mainly layered inorganic compounds, nanofibers and nanoparticles, combined with conventional flame retardant additives are addressed based on the open literature. Polymeric coatings with improved flame retardancy prepared using a wide variety of additives and UV‐curing technology are also introduced. Derived from this research, the combination of multiple methods and technologies including catalyst and nanotechnology, is predicted to have a high probability to enhance char formation and improve the flame retardancy of polymeric materials. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
The effect of phosphorus content on thermal degradation and burning behavior of poly(acryloyloxyethyl diethyl phosphate) or PADEP-coated cotton was studied. The results showed that PADEP-coated cotton prepared by admicellar polymerization using hexadecyltrimethylammonium bromide (HTAB) as a surfactant has higher amounts of phosphorus than that prepared using dodecyltrimethylammonium bromide (DTAB). Higher phosphorus content led to lower decomposition temperatures and greater amounts of char formation after thermal degradation. The effectiveness of the amount of phosphorus on the burning behavior of the treated cotton was investigated by an ASTM flammabilty test. In the case of PADEP-coated cotton prepared with DTAB, the flame spread slowly and extinguished with char formation on the fabric. For untreated cotton however, the flame spread quickly and burned the fabric entirely without char formation. Cotton coated with PADEP using HTAB exhibited self-extinguishing behavior after removing the ignition source. Decrease in decomposition temperature, increase in char formation and the burning behavior of PADEP-coated cotton are all consistent with phosphorus content on the treated fabric.  相似文献   

13.
通过取代反应、 缩合反应和加成反应等合成了一种无机-有机杂化大分子阻燃剂 六-[4-(N-苯基氨基-DOPO-次甲基)苯氧基]环三磷腈(DOPO-PCP), 并利用傅里叶变换红外光谱、 1H和 31P核磁共振波谱对其进行结构表征. 将DOPO-PCP用于环氧树脂(DGEBA)阻燃, 得到环氧树脂阻燃固化物, 通过极限氧指数(LOI)、 垂直燃烧测试(UL-94)、 热重分析与锥形量热(Cone)测试等对阻燃环氧树脂固化物的热稳定性及燃烧性能进行分析; 利用扫描电子显微镜及Mapping观察并分析了燃烧碳层的形貌与元素分布. 研究结果表明, 产物的结构符合设计的DOPO-PCP分子结构; 当DOPO-PCP在DGEBA中添加量(质量分数)达12.2%时, 磷含量为1.3%, 制得的阻燃环氧树脂固化物垂直燃烧测试通过UL-94 V-0级, LOI值为36.2%; Cone测试结果表明, DOPO-PCP的添加有效降低了DGEBA燃烧时热量与烟气的释放, 且在高温下碳残余量显著增加. 研究表明DOPO-PCP兼具气相和凝固相阻燃机理, 对DGEBA有良好的阻燃性能.  相似文献   

14.
Nano-Mg(OH)2 (nanometre magnesium hydroxide, nano-MH) was successfully introduced into the esterification and polycondensation system by in situ polymerization to obtain PET/magnesium salt composites (PETMS). The thermal properties and flame retardancy of PETMS were investigated by differential scanning calorimeter (DSC), thermogravimetric analysis (TGA), UL-94 vertical burning and limited oxygen index (LOI) test. The DSC and TGA results show that magnesium salts in the PET matrix have little effect on the thermal properties of PET, but a significant effect on the thermal stabilities of the composites. The results of LOI and UL-94 test show PETMS have higher LOI values (≥25%) and V-0 rating without melt dripping in the UL-94 test, indicating that PETMS have good flame retardancy and anti-dripping property. Moreover, the residues of magnesium salts and composites after TGA test were also studied by Fourier transform infrared spectroscopy (FTIR) to better understand the mechanism of flame retardancy, which reveals that magnesium salts accelerate the degradation of PET and catalyze the formation of char. The SEM results show the morphological structures of the char effectively protect the composites’ internal structures and inhibit the heat, smoke transmission and reduce the fuel gases when the fire contacts them.  相似文献   

15.
Synergistic effect was observed between expandable graphite (EG) and ammonium polyphosphate (APP) on flame retarded polylactide (PLA) in this paper using limiting oxygen index (LOI), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and X-ray spectroscopy (XPS) and cone calorimeter tests etc. In the experiments, PLA composites with 15 wt% of APP/EG(1:3) combinations showed a LOI value of 36.5 and V-0 rating in UL-94 tests, greatly improved flame retardant properties from composites with APP or EG alone. Results from TGA and cone calorimeter demonstrated that APP/EG combination could retard the degradation of polymeric materials above the temperature of 520 °C by promoting the formation of a compact char layer. This char layer protects the matrix effectively from heat penetrating inside and prevents its further degradation, resulting in lower weight loss rate and better flame retarded performance.  相似文献   

16.
Thermal degradation of wood treated with flame retardants   总被引:2,自引:0,他引:2  
Wood, one of the most flammable materials, was treated with various compounds containing nitrogen, phosphorus, halogens, and boron. For a study of flame retardance from the standpoint of thermal degradation, the samples were subjected to thermogravimetry (TG), differential thermal analysis (DTA) and differential thermogravimetry (DTG) in nitrogen to determine if there were any characteristic correlations between thermal degradation behaviors and the level of flame retardance. From the resulting data, kinetic parameters for different stages of thermal degradation are obtained using the method of Broido. The energies of activation for the decomposition of samples are found to be from 72 to 109 kJ mol–1. For wood and modified wood, the char yields are found to increase from 10.2 to 30.2%, LOI from 18 to 36.5, which indicates that the flame retardance of wood treated with compounds is improved. The flame retardant mechanism of different compounds has also been proposed.  相似文献   

17.
This paper describes an attempt to develop a durable finishing method in order to improve the fire performance of polyamide 66 fabrics. Hydroxymethylation with a 36% formaldehyde aqueous solution in association with a pad‐curing process to enable the fabric to react with flame‐retardant solutions was used in the finishing process. The fire performance of treated samples was characterized by limiting oxygen index (LOI) and vertical flammability tests, and the results show that the LOI value can increase from 21.6% to 46.2%. The thermal behavior of untreated and treated polyamide 66 fabrics was investigated by using thermogravimetic analysis and differential scanning calorimetry. Furthermore, residual char of treated fabric sample is much higher than that of untreated fabric sample. Fourier transform infrared spectroscopy proves that the substituted hydroxymethyl groups do exist on the molecular chain of polyamide fabric sample after surface modification. The morphology of residue char of polyamide 66 fabric samples was analyzed by scanning electron microscope, and the mechanical properties were also investigated and discussed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
Epoxy resins (EP) have been used as a thermos-setting material in the field of coating, casting, bonding agent, and laminating. However, a major drawback associated with its use is the lack of good flaming properties, and it is responsible for heavy smoke along with hazardous gases considerably limiting its uses in various fields. In this study, N-ethanolamine triazine-piperizine, a melamine polymer (ETPMP), was established as a new charring-foaming agent and was successfully synthesized with ethanolamine, piperizine, cyanuric chloride, and melamine as precursor molecules via the nucleophilic substitution reaction method. Elemental analysis and Fourier transform infrared (FTIR) spectroscopy analysis were applied to approve the synthesis of ETPMP and confirmation of its structure and characterization. The epoxy coating of intumescent flame retardant (IFR) was equipped by introducing ETPMP, ammonium polyphosphate (APP), and copper oxide (CuO) in multiple composition ratios. CuO was loaded at various amounts into the IFR-coating system as a synergistic agent. The synergistic action of CuO on IFR coatings was scientifically examined by using different analytical tests such as vertical burning test (UL-94V), limited oxygen index (LOI), thermal gravimetric analysis (TGA), cone calorimeter, and scanning electron microscope (SEM). The results showed that small changes in the amount of CuO expressively amplified the LOI results and enhanced the V-0 ratings in the UL-94V test. The TGA data clearly demonstrate that the inclusion of CuO can transform the thermal deprivation behavior of coatings with a growing char slag proportion with elevated temperatures. Information from cone calorimeter data affirmed that CuO can decrease the burning factors by total heat release (THR) together with peak heat release rate (PHRR). The SEM images indicated that CuO can enrich the power and compression of the intumescent char that restricts the movement of heat and oxygen. Our results demonstrate a positive influence of CuO on the epoxy-headed intumescent flame retardant coatings.  相似文献   

19.
The choice of charring agent is one of the major issues for solvent‐free fireproof coatings. The effects of processing method and charring agent on the thermal insulation and fire resistance of the coatings were investigated in simulated fire scenarios. Dipentaerythritol (DPER), triazine agent (CFA), and pentaerythritol phosphate (PEPA) were compared as charring agent, and the thermal, combustion, fire resistance, and charring behaviors in different fire scenario were characterized for the fireproof coatings. Compared with high‐speed dispersing equipment, kneading processing equipment is favorable for improving the thermal stability and fire resistance of the coatings, because the stronger shearing force has promoted mixing and dispersion of the ingredients in solvent‐free fireproof coatings. As for charring agents, it is found that the fireproof coatings containing CFA or PEPA show better thermal and flame‐retardant performances. More residue was observed under nitrogen atmosphere in thermogravimetric analysis, less heat and smoke were released in cone calorimetry test. However, during the high temperature fire resistance test, their char layers were prone to delaminate while DPER‐containing coatings produced intact and stronger char layer with better heat insulation. For practical applications, the coating formulations need to be optimized to achieve both fire resistance and flame retardancy.  相似文献   

20.
A novel flame retardant (PSiN), containing silicon and nitrogen, was synthesized using N-(β-aminoethyl)-γ-aminopropylmethyldimethoxysilane and diphenylsilanediol through solution polycondensation and it was added to polycarbonate (PC). The structure and thermal properties of PSiN were characterized by fourier transform infrared spectroscopy and thermogravimetric analysis (TG) tests. The effect of PSiN on the flame retardancy and thermal behaviors of PC was investigated by limited oxygen index (LOI), vertical burning test (UL-94), and TG tests. The results showed that the flame retardancy and the thermal stability of PC are improved with the addition of PSiN. When 1 mass% PSiN and 0.5 mass% diphenylsulfone sulfonate (KSS) are incorporated, the LOI value of PC is found to be 46, and class V-0 of UL-94 test is passed. The char structure observed by scanning electron microscopy indicated that the surface of the char for PC/KSS/PSiN system holds a firmer and denser char structure when compared with neat PC and PC/KSS system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号