首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Ceramics with composition Ba1-xNaxTi1-xNbxO3 are of either classical ferroelectric (0 ≤ × < 0.075) or relaxor ferroelectric types (0.075 ≤ x ≤0.55), and ferro- or antiferroelectric for compositions 0.55 < × ≤ 1. The dielectric study of ceramics with compositions close to NaNbO3 showed a sharp peak of ε'r without frequency dispersion. The value of Tc is decreasing as composition deviates from NaNbO3. Ceramic samples are tetragonal at room temperature; they could be polarized and then show pyroelectric and piezoelectric properties up to 400K (p = 25nC.cm−2.K−1 and d3130pC.N−1 at 300K). This study aims at the preparation of environment-friendly lead-free relaxor ceramics which present a transition temperature close to room temperature.  相似文献   

2.
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33≈10–16 pC N−1, and pyroelectric coefficient of p≈25.8 μC m−2 K−1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of 6.3.  相似文献   

3.
Base hydrolysis reactions of [Cr(tmpa)(NCSe)]2O2+, [Cr(tmpa)(N3)]2O2+, [Cr2(tmpa)2(μ−O)(μ−PhPO4)]4+ and [Cr2(tmpa)2(μ−O)(μ−CO3)]2+ follow the pseudo‐first‐order relationship (excess OH): kobsd=ko+kbQp[OH]/(1+Qp[OH]). For the CO32− complex, kb(60°C)=(1.50±0.03)×10−2 s−1; ΔH‡=61±2 kJ/mol, ΔS‡=−99±7 J/mol K; Qp(60°C)=(3.8±0.3)×101 M−1; ΔH°=67±2 kJ/mol, ΔS°=230±7 J/mol K (I=1.0 M). An isokinetic relationship among kOH(=kbQp) activation parameters for five (tmpa)CrOCr(tmpa) complexes shows that all follow essentially the same pathway. Activated complex formation is thought to require nucleophilic attack of coordinated OH at the chromium‐leaving group bond in the kb step, accompanied by reattachment of a tmpa pyridyl arm displaced by OH in the Qp preequilibrium. Abstraction of both thiocyanate ligands was observed upon mixing [Cr(tmpa)(NCS)]2O2+ with [Pd(CH3CN)4]2+ in CH3CN solution. The proposed mechanism requires rapid complexation of both reactant thiocyanate ligands by Pd(II) (Kp(25°C)=(4.5±0.2)×108 M−2; ΔH°=−32±6 kJ/mol, ΔS°=59±19 J/mol K) prior to rate‐limiting Cr NCS bond‐breaking (k2(25°C)=(1.17±0.02)×10−3 s−1; ΔH‡=98±2 kJ/mol, ΔS‡=27±5 J/mol K). Pd(II)‐assisted NCS abstraction is not driven by weakening of the Cr( )NCS bond through ligation of the sulfur atom to palladium, but rather by a favorable ΔS‡ resulting from the release of Pd(NCS)+ fragments and weak solvation of the activated complex in CH3CN solution. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 351–356, 1999  相似文献   

4.
Bi(Mg0.5Hf0.5)O3–modified BiFeO3–BaTiO3 ternary solid solutions of (0.725-x)BiFeO3-0.275BaTiO3-xBi(Mg0.5Hf0.5)O3 (0 < x ≤ 0.05, abbreviated as BFO-BTO-xBMHO) were prepared for lead-free piezoelectrics. The addition of BMHO delivers a rhombohedral (R3c, denoted as R-phase) to tetragonal (P4mm, denoted as T-phase) phase transition at x = 0.05, giving the coexistence of R- and T-phase in intermediate compositions: R-phase dominated in x = 0.01–0.02 and T-phase dominated in x = 0.03–0.04. The increment of BMHO tunes the grain size, lowers the ferroelectric transition temperature (TC) and dielectric loss (tanδ), and drives a gradually ferroelectric to relaxor transition. The morphotropic phase boundary between the R-and T-phases, together with the homogeneous morphology, results in the best performance for x = 0.04 case with piezoelectric d33 of 130 pC/N, Kp of 0.286, Qm of 58.993, electrostrain Smax of 0.18%, and TC of 428 °C, showing potential applications for lead-free piezoelectric ceramics at considerably high temperature.  相似文献   

5.
The ferroelectric and piezoelectric properties of a new class of polymer ferroelectric and piezoelectric materials, nylon 11/polyvinylidene fluoride (PVF2) bilaminate films, prepared by a co-melt-pressing method, is presented. The bilaminate films exhibit typical ferroelectric D-E hysteresis behavior with a remanent polarization, Pr, of about 75 mC/m2, which is higher than the value of 52 mC/m2 observed for PVF2 or nylon 11 films measured under the same conditions. The coercive field, Ec, of the bilaminate films is ~ 78 MV/m, which is higher than that of either PVF2 or nylon 11 films. Measurements of the temperature dependence of the piezoelectric strain coefficient, d31, and the piezoelectric stress coefficient, e31, were also carried out. The bilaminate films exhibit a piezoelectric strain coefficient, d31, of 41 pC/N at room temperature, which is significantly higher than the PVF2 films (25 pC/N) and the nylon 11 films (3.1 pC/N). When the temperature is increased to 110°C, d31 of the bilaminate films reaches a maximum value of 63 pC/N, more than five times that of PVF2 (11 pC/N) and more than four times that of nylon 11 (14 pC/N) at the same temperature. The piezoelectric stress coefficient, e31, of the bilaminate films shows a value of 109 mC/m2 at room temperature, almost twice that of the PVF2 films (59 mC/m2) and about 18 times that of the nylon 11 films (6.2 mC/m2). Measurement of the temperature dependence of the hydrostatic piezoelectric coefficient, dh, of the bilaminate films also shows an enhancement with respect to the individual components, PVF2 and nylon 11. ©1995 John Wiley & Sons, Inc.  相似文献   

6.
Porous materials with d3 electronic configuration open metal sites have been proved to be effective adsorbents for N2 capture and N2/O2 separation. However, the reported materials remain challenging to address the trade-off between adsorption capacity and selectivity. Herein, we report a robust MOF, MIL-102Cr, that features two binding sites, can synergistically afford strong interactions for N2 capture. The synergistic adsorption site exhibits a benchmark Qst of 45.0 kJ mol−1 for N2 among the Cr-based MOFs, a record-high volumetric N2 uptake (31.38 cm3 cm−3), and highest N2/O2 selectivity (13.11) at 298 K and 1.0 bar. Breakthrough experiments reveal that MIL-102Cr can efficiently capture N2 from a 79/21 N2/O2 mixture, providing a record 99.99 % pure O2 productivity of 0.75 mmol g−1. In situ infrared spectroscopy and computational modelling studies revealed that a synergistic adsorption effect by open Cr(III) and fluorine sites was accountable for the strong interactions between the MOF and N2.  相似文献   

7.
The perovskite (Bi0.5Pb0.5)(Fe0.5Zr0.5)O3 was synthesized by solid-state reaction in an attempt to find magnetoelectric materials, in which ferroelectricity and ferromagnetism coexist. This complex perovskite has been studied by X-ray and neutron powder diffraction in combination with magnetic measurements. The compound crystallizes in the orthorhombic space group Pbam with a ~ √2ap, b ~ 2√2ap and c ~ 2ap (with ap ~ 4.057 Å). The field and temperature dependence of the magnetization combined with neutron diffraction data showed antiferromagnetic behavior with the Neel temperature, TN ~ 450 K. Rietveld refinements of neutron powder diffraction data collected at different temperatures, between 10 and 700 K, have been carried out in order to extract information about the thermal evolution of the nuclear and magnetic structures. A distorted orthorhombic perovskite structure was found within the whole temperature interval. The Bi/Pb and Fe/Zr ions were found to be partially ordered over the perovskite A-site and disordered over the B-site. The neutron diffraction patterns of the (Bi0.5Pb0.5)(Fe0.5Zr0.5)O3 sample showed evidence of a long-range magnetic ordering below TN with a propagation vector k = (0,0,0) and an antiferromagnetic arrangement of the magnetic moments of the Fe3+ cations in the B-site. This is consistent with an Ay-type magnetic structure. The factors governing the structural and magnetic properties of (1 ? x)BiFeO3xPbZrO3 solid solutions are discussed and compared with those of pure BiFeO3 and PbZrO3. A solid solution strategy for developing magnetoelectric properties in BiFeO3-based compounds is described, with the aim of realizing both a spontaneous polarization and magnetization at room temperature.  相似文献   

8.
(S)‐1‐(Methylaminocarbonyl)‐3‐phenylpropanaminium chloride (S2·HCl), C10H15N2O+·Cl, crystallizes in the orthorhombic space group P212121 with a single formula unit per asymmetric unit. (5R/S)‐5‐Benzyl‐2,2,3‐trimethyl‐4‐oxoimidazolidin‐1‐ium chloride (R3 and S3), C13H19N2O+·Cl, crystallize in the same space group as S2·HCl but contain three symmetry‐independent formula units. (R/S)‐5‐Benzyl‐2,2,3‐trimethyl‐4‐oxoimidazolidin‐1‐ium chloride monohydrate (R4 and S4), C13H19N2O+·Cl·H2O, crystallize in the space group P21 with a single formula unit per asymmetric unit. Calculations at the B3LYP/6–31G(d,p) and B3LYP/6–311G(d,p) levels of the conformational energies of the cation in R3, S3, R4 and S4 indicate that the ideal gas‐phase global energy minimum conformation is not observed in the solid state. Rather, the effects of hydrogen‐bonding and van der Waals interactions in the crystal structure cause the molecules to adopt higher‐energy conformations, which correspond to local minima in the molecular potential energy surface.  相似文献   

9.
BaTiO3 nanofibers (BT NFs), prepared by electrospinning, were used as a filler for electrospun poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) nanocomposite mats. The phase structure and the effect of poling conditions on the piezoelectric properties of PVDF-TrFE/BT nanocomposites were investigated. The results showed an improved degree of crystallinity (78.6%) and a high β-crystal phase (up to 98.3%) in all electrospun samples, independent of the nanofiber content. The two-step poling method, applying electric fields of opposite polarity, led to significantly improved piezoelectric constants d33 (−31.7 pC N−1), strongly dependent on the added BaTiO3 nanofibers. The inclusion of piezoelectric ceramic nanofibers into a polymer matrix, easily carried out by means of electrospinning, followed by an ad hoc optimized poling treatment, allowed to develop flexible materials with enhanced piezoelectric properties, potentially exploitable in innovative conversion systems used in wearable and sensing devices.  相似文献   

10.
Piezoelectric materials are a class of important functional materials applied in high‐voltage sources, sensors, vibration reducers, actuators, motors, and so on. Herein, [(CH3)3S]3[Bi2Br9]( 1 ) is a brilliant semiconducting organic–inorganic hybrid perovskite‐type non‐ferroelectric piezoelectric with excellent piezoelectricity. Strikingly, the value of the piezoelectric coefficient d33 is estimated as ≈18 pC N?1. Such a large piezoelectric coefficient in non‐ferroelectric piezoelectric has been scarcely reported and is comparable with those of typically one‐composition non‐ferroelectric piezoelectrics such as ZnO (3pC N?1) and much greater than those of most known typical materials. In addition, 1 exhibits semiconducting behavior with an optical band gap of ≈2.58 eV that is lower than the reported value of 3.37 eV for ZnO. This discovery opens a new avenue to exploit molecular non‐ferroelectric piezoelectric and should stimulate further exploration of non‐ferroelectric piezoelectric due to their high stability and low loss characteristics.  相似文献   

11.
Ba0.5Sr0.5Ti1?xNixO3 (BSTN) ceramics were prepared from BSTN nanopowders synthesized by a hydrothermal method. The phase and microstructure of samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy. XRD results indicate a cubic structure of the pure BST nanopowders. The cubic structure can be converted to the orthorhombic phase with increasing of Ni content to x = 0.01 and returned to the cubic structure with the presence of Ni(OH)2 impurity phase for x = 0.03 and 0.05. However, the BSTN ceramics sintered at 1,200 °C for 3 h revealed the orthorhombic phase structure with NiO impurity phase for all Ni content. The doping of Ni in Ba0.5Sr0.5TiO3 structure can increase the grain size of samples from 1.47 to 3.26 μm. The dielectric constant, loss tangent (tanδ) and phase transition temperature of BSTN ceramics were reduced with increasing Ni content.  相似文献   

12.
《Solid State Sciences》2012,14(9):1338-1342
Lead free 0.95[(K0.5Na0.5)1−xAgxNbO3]–0.05LiSbO3 (KNAN–LS) ceramics with x = 0, 0.02, 0.04, 0.06 and 0.08 have been synthesized by conventional solid state reaction route (CSSR). X-ray diffraction (XRD) analysis confirmed the transformation of mixed structure to pure tetragonal structure with the increase in Ag content in KNN–LS ceramics. The Curie temperature (Tc) of the ceramics decreased from 385.5 °C to 331 °C with the increase in silver (Ag) content. The poling temperature was optimized for better piezoelectric properties. The KNAN–LS ceramics with x = 0.06 showed better piezoelectric and ferroelectric properties (d33 = 227 pC/N, kp = 42.5%, Tc = 368 °C and Pr = 21.9 μC/cm2).  相似文献   

13.
The objective of this study is to characterize the electronic state and local surrounding of 57Fe Mössbauer probe atoms within iron-doped layered perovskite La2Li0.5Cu0.5O4 containing transition metal in unusual formal oxidation states “+3”. An approach based on the qualitative energy diagrams analysis and the calculations within the cluster configuration interaction method have been developed. It was shown that a large amount of charge is transferred via Cu-O bonds from the O: 2p bands to the Cu: 3d orbitals and the ground state is dominated by the d9L configuration (“Cu2+-O-” state). The dominant d9L ground state for the (CuO6) sublattice induces in the environment of the 57Fe probe cations a charge transfer Fe3+ + O(L) → Fe4+ + O2−, which transforms “Fe3+” into “Fe4+” state. The experimental spectra in the entire temperature range 77–300 K were described with the use of the stochastic two-level model based on the assumption of dynamic equilibrium between two Fe3+↔Fe4+ valence states related to the iron atom in the [Fe(1)O4]4- center. The relaxation frequencies and activation energies of the corresponding charge fluctuations were estimated based on Mössbauer data. The results are discussed assuming a temperature-induced change in the electronic state of the [CuO4]5- clusters in the layered perovskite.  相似文献   

14.
Developing robust, wearable, and biocompatible energy harvesting devices with bulk oxides (ceramics and perovskites) is extremely hard to achieve due to their zero mechanical flexibility, heavy metal toxicity, and tunability of properties. Alternatively, discrete inorganic complexes can be an excellent choice to overcome the above-stated issues, thanks to appropriate molecular engineering. Herein, we report an above-room-temperature ferroelectric discrete molecular complex [Cu(L-phe)(bpy)(H2O)]PF6⋅H2O ( 1 ) which is suitable for piezoelectric energy harvesting due to its large values of piezoelectric co-efficient (d33=10 pm V−1) and spontaneous polarization (Ps=1.3 μC cm−2). Among the devices prepared with the composite films of polyvinyl alcohol (PVA) and various weight % composition of 1 , the 10 Wt % composite shows the highest output voltage of 8 V, a power density of 0.85 μW cm−2, and output current of 5 μA, which is highest for any discrete inorganic complex reported to date.  相似文献   

15.
Vanadium based compounds are promising cathode materials for aqueous zinc (Zn)-ion batteries (AZIBs) due to their high specific capacity. However, the narrow interlayer spacing, low intrinsic conductivity and the vanadium dissolution still restrict their further application. Herein, we present an oxygen-deficient vanadate pillared by carbon nitride (C3N4) as the cathode for AZIBs through a facile self-engaged hydrothermal strategy. Of note, C3N4 nanosheets can act as both the nitrogen source and pre-intercalation species to transform the orthorhombic V2O5 into layered NH4V4O10 with expanded interlayer spacing. Owing to the pillared structure and abundant oxygen vacancies, both the Zn2+ ion (de)intercalation kinetics and the ionic conductivity in the NH4V4O10 cathode are promoted. As a result, the NH4V4O10 cathode delivers exceptional Zn-ion storage ability with a high specific capacity of about 370 mAh g−1 at 0.5 A g−1, a high-rate capability of 194.7 mAh g−1 at 20 A g−1 and a stable cycling performance of 10 000 cycles.  相似文献   

16.
We demonstrate that trimethylamine borane can exhibit desirable piezoelectric and pyroelectric properties. The material was shown to be able operate as a flexible film for both thermal sensing, thermal energy conversion and mechanical sensing with high open circuit voltages (>10 V). A piezoelectric coefficient of d33≈10–16 pC N?1, and pyroelectric coefficient of p≈25.8 μC m?2 K?1 were achieved after poling, with high pyroelectric figure of merits for sensing and harvesting, along with a relative permittivity of 6.3.  相似文献   

17.
(Pb1−xSrx)Nb1.96Ti0.05O6 with 2 wt% excess PbO (x = 0, 0.02, 0.04, 0.06, 0.08) piezoelectric ceramics with high Curie temperature were fabricated via the conventional solid state reaction method. Effects of Sr2+ amount on crystallite structure, microstructure, dielectric and piezoelectric properties were studied. The substitution of Sr2+ ions for Pb2+ ions is effective to lower sintering temperatures. X-ray diffraction patterns indicate that all ceramics form the single orthorhombic ferroelectric phase. The doping of Sr2+ ions facilitates improving densification of the ceramics. Grain size and lattice parameters of the ceramics vary with the change of the Sr2+ contents. Both Curie temperature and maximum dielectric constant change with increasing the Sr2+ amounts. The dielectric constant data were also studied using the Curie–Weiss law and modified Curie–Weiss law. The ceramic with x = 0.04 possesses excellent piezoelectric and dielectric properties, presenting a high potential to be used in high-temperature applications as piezoelectric transducers.  相似文献   

18.
The free‐radical copolymerization of itaconic acid (IA) and styrene in solutions of dimethylformamide and d6‐dimethyl sulfoxide (50 wt %) has been studied by 1H NMR kinetic experiments. Monomer conversion versus time data were used to estimate the ratio kp · kt−0.5 for various comonomer mixture compositions. The ratio kp · kt−0.5 varies from 5.2 · 10−2 for pure styrene to 2.0 · 10−2 mol0.5 L−0.5 s−0.5 for pure IA, indicating a significant decrease in the rate of polymerization. Individual monomer conversion versus time traces were used to map out the comonomer mixture–composition drift up to overall monomer conversions of 60%. Within this conversion range, a slight but significant depletion of styrene in the monomer feed can be observed. This depletion becomes more pronounced at higher levels of IA in the initial comonomer mixture. The kinetic information is supplemented by molecular weight data for IA/styrene copolymers obtained by variation of the comonomer mixture composition. A significant decrease in molecular weight of a factor of 2 can be observed when increasing the mole fraction of IA in the initial reaction mixture from 0 to 0.5. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 656–664, 2001  相似文献   

19.
Photocatalytic hydrogen evolution by water splitting is highly important for the application of hydrogen energy and the replacement of fossil fuel by solar energy, which needs the development of efficient catalysts with long-term catalytic stability under light irradiation in aqueous solution. Herein, Zn0.5Cd0.5S solid solution was synthesized by a metal–organic framework-templated strategy and then loaded with MoS2 by a hydrothermal method to fabricate a MoS2/Zn0.5Cd0.5S heterojunction for photocatalytic hydrogen evolution. The composition of MoS2/Zn0.5Cd0.5S was fine-tuned to obtain the optimized 5 wt % MoS2/Zn0.5Cd0.5S heterojunction, which showed a superior hydrogen evolution rate of 23.80 mmol h−1 g−1 and steady photocatalytic stability over 25 h. The photocatalytic performance is due to the appropriate composition and the formation of an intimate interface between MoS2 and Zn0.5Cd0.5S, which endows the photocatalyst with high light-harvesting ability and effective separation of photogenerated carriers.  相似文献   

20.
Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3BX6 type cyanometallate [Ph2(iPrNH)2P]3[Fe(CN)6] ( 1 ), which shows a ferroelectric saturation polarization (Ps) of 3.71 μC cm−2. Compound 1 exhibits a high electrostrictive coefficient (Q33) of 0.73 m4 C−2, far exceeding those of piezoceramics (0.034–0.096 m4 C−2). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1 -TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 μW cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号