首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The SNH reaction of lithiated 4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-1-oxyl 3-oxide with quinoline N-oxide affords 4,4,5,5-tetramethyl-2-(1-oxidoquinolin-2-yl)-4,5-dihydro-1H-imidazole-1-oxyl 3-oxide.  相似文献   

2.
Ligand mobility of silica-based HPLC stationary phases modified by various surface coverages of acridine-9-carboxy(N-aminoethylaminopropyl)amide ligands was investigated by fluorescence spectroscopy, time-resolved fluorescence anisotropy measurements, as well as solid-state 13C-CP/MAS- and 1H-MAS-NMR spectroscopy. Rotational correlation times, τR, of the bound acridine fluorophore obtained from fluorescence anisotropy measurements are significantly longer in the bound phase, than in solution. Also, in time-resolved experiments anisotropies do not decay to zero. These results are interpreted in terms of wobble-in-cone ligand motion. The mobility of the fluorophore in the presence of liquid phase correlates strongly with the solubility of the model compound acridine-9-carboxy-n-butylamide in the same solvent. In the good solvent acetonitrile τR = 3.2 ns is found, whereas in methanol, τR > 80 ns is obtained. NMR measurements of the dry phase yield large linewidths, cross polarization constants, TCH, and spin-lattice relaxation times, TH, shifting around the minimum in the correlation time curve. Both fluorescence and NMR data indicate medium to low ligand mobility. No difference in the mobilities of alkyl spacer and aromatic group is observed, probably due to the rigidity of the amide group.  相似文献   

3.
The degradation pathways of highly active [Cp*Ir(κ2-N,N-R-pica)Cl] catalysts (pica=picolinamidate; 1 R=H, 2 R=Me) for formic acid (FA) dehydrogenation were investigated by NMR spectroscopy and DFT calculations. Under acidic conditions (1 equiv. of HNO3), 2 undergoes partial protonation of the amide moiety, inducing rapid κ2-N,N to κ2-N,O ligand isomerization. Consistently, DFT modeling on the simpler complex 1 showed that the κ2-N,N key intermediate of FA dehydrogenation ( INH ), bearing a N-protonated pica, can easily transform into the κ2-N,O analogue ( INH2 ; ΔG≈11 kcal mol−1, ΔG ≈−5 kcal mol−1). Intramolecular hydrogen liberation from INH2 is predicted to be rather prohibitive (ΔG≈26 kcal mol−1, ΔG≈23 kcal mol−1), indicating that FA dehydrogenation should involve mostly κ2-N,N intermediates, at least at relatively high pH. Under FA dehydrogenation conditions, 2 was progressively consumed, and the vast majority of the Ir centers (58 %) were eventually found in the form of Cp*-complexes with a pyridine-amine ligand. This likely derived from hydrogenation of the pyridine-carboxiamide via a hemiaminal intermediate, which could also be detected. Clear evidence for ligand hydrogenation being the main degradation pathway also for 1 was obtained, as further confirmed by spectroscopic and catalytic tests on the independently synthesized degradation product 1 c . DFT calculations confirmed that this side reaction is kinetically and thermodynamically accessible.  相似文献   

4.
The reaction of nicotinamide N-oxide with 1-adamantanethiol in acetic anhydride yielded a mixture of 2-and 6-(1-adamantylthio)nicotinamides (49%, in the ratio of 24:1) and 2-, 5-, and 6-(1-adamantylthio)nicotino-nitriles (18%, in the ratio of 79:1:20). From a reaction of nicotinic acid N-oxide with 1-adamantanethiol, there was isolated 2-(1-adamantylthio)nicotinic acid as the only sulfide in 23% yield. Carbon? sulfur bond cleavage took place when 2-(1-adamantylthio)nicotinic acid, or the corresponding amide or nitrile, were boiled with concentrated hydrochloric acid to furnish 2-mercaptonicotinic acid and 1-chloroadamantane, quantitatively. The reaction of nicotinamide N-oxide alone in acetic anhydride at 135° formed N-acetyl-2-hydroxynicotinamide (61%), 2-hydroxynicotinonitrile (0.5%) and N,N-diacetyl-2-acetoxynicotinamide (0.8%).  相似文献   

5.
A fluorescent probe LZ-N with naphthalimide as fluorophore and N-butylbenzene-1,2-diamine as a new recognition moiety for copper ion was designed and synthesized. The probe LZ-N exhibits high selectivity for Cu2+ ion in aqueous media (CH3CN:H2O = 1:1) over all the other metal ions in our study, more than 20-fold fluorescence enhancement by coordinating with Cu2+, and the maximum emission intensity independence in the range of pH 2.06–9.25. The results of 1H-NMR titration, time-resolved fluorescence decay measurement, and computational optimization illuminate the mechanisms of Cu2+ and probe LZ-N. Confocal fluorescence images and cell viability values test show the high fluorescence enhancement of probe LZ-N for exogenous Cu2+ in living cells.  相似文献   

6.
The chiral lithium amide Li‐ 1 , prepared from (S)‐N‐[(R)‐2‐methoxy‐1‐phenylethyl]‐α‐methylbenzylamine 1 , is known to form a mixed complex with BuLi, i.e., Li‐ 1 /BuLi. When this complex is kept at room temperature for 3–5 h, a regioselective lithiation of one of the ortho‐C‐atoms in the amide occurs. Kinetic studies indicate that this reaction proceeds within the mixed aggregate with a first‐order rate constant for the rate‐limiting step k2=9.4×10−4 s−1G=21 kcal mol−1). Molecular modeling (semi‐empirical PM3) suggests that the observed selectivity and reactivity are a consequence of the solvation and structure of the mixed complex, i.e., an example of a complex induced proximity effect (CIPE).  相似文献   

7.
Although (E)-4-(2-(4-(dicyanomethylene)-4H-chromen-2-yl)vinyl)phenolate anion (DCPO) has recently emerged as a potential near infrared (NIR) biosensor signaling unit, the pKa value of its conjugate acid is relatively high (∼9); this will lead to relatively low concentrations of DCPO under physiological conditions and, hence, unsatisfactory sensitivity of DCPO-based bio-probes. By difluoro-substitution on DCPO, we have exploited a new fluorophore of o-FDCPO whose conjugate acid has a much lower pKa value of 7.42. Meanwhile, o-FDCPO is NIR emissive with λem=693 nm and has a 0.76-fold higher fluorescence efficiency than DCPO. The significant superiority of o-FDCPO over DCPO in sensitivity for NIR biosensor applications was confirmed by comparative studies on two HNO probes, namely o-FDCPO-P and DCPO-P, which bear signaling units of o-FDCPO and DCPO, respectively. Moreover, o-FDCPO-P has been demonstrated to be a high-performance HNO probe with high selectivity, high sensitivity (detection limit: 50 nm ), and a rapid response, together with a two-photon NIR-excitation imaging capability.  相似文献   

8.
A new polymeric copper complex, viz.catena‐poly[[[μ‐N,N′‐bis(3‐amino­propyl)oxa­mid­ato‐κ6N,N′,O:N′′,N′′′,O′]­dicopper(II)]‐di‐μ‐dicyan­amido‐1:1′κ2N1:N5;2:2′κ2N1:N5], [Cu2(C8H16N4O2)(C2N3)2]n or [Cu(oxpn)0.5{N(CN)2}]n [where H2oxpn is N,N′‐bis(3‐amino­propyl)­ox­amide], has been ­synthesized by the reaction of Cu(oxpn), [Cu(ClO4)2]·6H2O and NaN3. In the crystal structure, the Cu atom is five‐coordinate and has a square‐pyrimidal (SP) configuration. In the polymer, dicyan­amide (dca) groups link CuII cations in a μ‐1,5‐bridging mode, generating novel ladders in which each step is composed of dimeric [Cu2(oxpn)]2+ cations. Abundant hydrogen bonds connect the polymer ladders into a two‐dimensional network structure.  相似文献   

9.
Cavity ring‐down (CRD) techniques were used to study the kinetics of the reaction of Br atoms with ozone in 1–205 Torr of either N2 or O2, diluent at 298 K. By monitoring the rate of formation of BrO radicals, a value of k(Br + O3) = (1.2 ± 0.1) × 10−12 cm3 molecule−1 s−1 was established that was independent of the nature and pressure of diluent gas. The rate of relaxation of vibrationally excited BrO radicals by collisions with N2 and O2 was measured; k(BrO(v) + O2 → BrO(v − 1) + O2) = (5.7 ± 0.3) × 10−13 and k(BrO(v) + N2 → BrO(v − 1) + N2) = (1.5 ± 0.2) × 10−13 cm3 molecule−1 s−1. The increased efficiency of O2 compared with N2 as a relaxing agent for vibrationally excited BrO radicals is ascribed to the formation of a transient BrO–O2 complex. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 125–130, 2000  相似文献   

10.
3‐Aminocarbonyl‐1‐benzylpyridinium bromide (N‐benzylnicotinamide, BNA), C13H13N2O+·Br, (I), and 1‐benzyl‐1,4‐dihydropyridine‐3‐carboxamide (N‐benzyl‐1,4‐dihydronicotinamide, rBNA), C13H14N2O, (II), are valuable model compounds used to study the enzymatic cofactors NAD(P)+ and NAD(P)H. BNA was crystallized successfully and its structure determined for the first time, while a low‐temperature high‐resolution structure of rBNA was obtained. Together, these structures provide the most detailed view of the reactive portions of NAD(P)+ and NAD(P)H. The amide group in BNA is rotated 8.4 (4)° out of the plane of the pyridine ring, while the two rings display a dihedral angle of 70.48 (17)°. In the rBNA structure, the dihydropyridine ring is essentially planar, indicating significant delocalization of the formal double bonds, and the amide group is coplanar with the ring [dihedral angle = 4.35 (9)°]. This rBNA conformation may lower the transition‐state energy of an ene reaction between a substrate double bond and the dihydropyridine ring. The transition state would involve one atom of the double bond binding to the carbon ortho to both the ring N atom and the amide substituent of the dihydropyridine ring, while the other end of the double bond accepts an H atom from the methylene group para to the N atom.  相似文献   

11.
The interaction of the antimigraine pharmaceutical agent frovatriptan with acetic acid and succinic acid yields the salts (±)‐6‐carbamoyl‐N‐methyl‐2,3,4,9‐tetrahydro‐1H‐carbazol‐3‐aminium acetate, C14H18N3O+·C2H3O2, (I), (R)‐(+)‐6‐carbamoyl‐N‐methyl‐2,3,4,9‐tetrahydro‐1H‐carbazol‐3‐aminium 3‐carboxypropanoate monohydrate, C14H18N3O+·C4H5O4·H2O, (II), and bis[(R)‐(+)‐6‐carbamoyl‐N‐methyl‐2,3,4,9‐tetrahydro‐1H‐carbazol‐3‐aminium] succinate trihydrate, 2C14H18N3O+·C4H4O42−·3H2O, (III). The methylazaniumyl substitutent is oriented differently in all three structures. Additionally, the amide group in (I) is in a different orientation. All the salts form three‐dimensional hydrogen‐bonded structures. In (I), the cations form head‐to‐head hydrogen‐bonded amide–amide catemers through N—H...O interactions, while in (II) and (III) the cations form head‐to‐head amide–amide dimers. The cation catemers in (I) are extended into a three‐dimensional network through further interactions with acetate anion acceptors. The presence of succinate anions and water molecules in (II) and (III) primarily governs the three‐dimensional network through water‐bridged cation–anion associations via O—H...O and N—H...O hydrogen bonds. The structures reported here shed some light on the possible mode of noncovalent interactions in the aggregation and interaction patterns of drug molecule adducts.  相似文献   

12.
Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11‐dihydro‐5H‐dibenzo[b,f]azepin‐5‐yl)(hydroxy)methylidene]azanium chloride, C15H15N2O+·Cl}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11‐dihydro‐5H‐dibenzo[b,f]azepin‐5‐yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O+·Cl·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11‐dihydro‐5H‐dibenzo[b,f]azepin‐5‐yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O+·Br·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z′ = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C—N bond shortening) and the supramolecular structures. The amide‐to‐amide and dimeric hydrogen‐bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one‐dimensional polymeric constructs with no direct amide‐to‐amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.  相似文献   

13.
Activation of N2 on anionic trimetallic V3−xTaxC4 (x=0–3) clusters was theoretically studied employing density functional theory. For all studied clusters, initial adsorption of N2 (end-on) on one of the metal atoms (denoted as Site 1) is transferred to an of end-on: side-on: side-on coordination on three metal atoms, prior to N2 dissociation. The whole reaction is exothermic and has no global energy barriers, indicating that the dissociation of N2 is facile under mild conditions. The reaction process can be divided into two processes: N2 transfer (TRF) and N−N dissociation (DIS). For V-series clusters, which has a V atom on Site 1, the rate-determining step is DIS, while for Ta-series clusters with a Ta on Site 1, TRF may be the rate-determining step or has energy barriers similar to those of DIS. The overall energy barriers for heteronuclear V2TaC4 and VTa2C4 clusters are lower than those for homonuclear V3C4 and Ta3C4, showing that the doping effect is beneficial for the activation and dissociation of N2. In particular, V−Ta2C4 has low energy barriers in both TRF and DIS, and it has the highest N2 adsorption energy and a high reaction heat release. Therefore, a trimetallic heteronuclear V-series cluster, V−Ta2C4, is suggested to have high reactivity to N2 activation, and may serve as a prototype for designing related catalysts at a molecular level.  相似文献   

14.
The reaction of [Ln(hfac)3] ⋅ 2 H2O and pyridine-N-oxide (PyNO) leads to isostructural dimers of the formula [Ln(hfac)3(PyNO)]2 (Ln=Eu, Gd, Tb, Dy). The Dy derivative shows a remarkable single-molecule magnet behavior with complex hysteresis at 1.4 K. The dynamics of the magnetization features are two relaxation regimes: a thermally activated one at high temperature (τ0=(5.62±0.4)×10−11 s and Δ=(167±1) K) and a quantum tunneling regime at low temperature with a tunneling frequency of 0.42 Hz. The analysis of the Gd derivative evidences intradimer antiferromagnetic interactions (J=(−0.034±0.001) cm−1). Moreover, the Eu, Tb, and Dy derivatives are luminescent with quantum yield of 51, 53, and 0.1 %, respectively. The thermal investigation of [Dy(hfac)3(PyNO)]2 shows that the dimers can be sublimated intact, suggesting their possible exploit as active materials for surface-confined nanostructures to be investigated by fluorimetry methods.  相似文献   

15.
The detection of changes in the reactive oxygen species (ROS)/reactive sulfur species (RSS) couple is important for studying the cellular redox state. Herein, we developed a 1,8-naphthalimide-based fluorescence probe ( NI ) for the reversible detection of bisulfite (HSO3) and hydrogen peroxide (H2O2) in vitro and in vivo. NI has been designed with a reactive ethylene unit which specifically reacts with HSO3 by a Michael addition reaction mechanism, resulting in the quenching of yellow fluorescence at 580 nm and the appearing of green fluorescence at 510 nm upon excitation at 500 nm and 430 nm, respectively. The addition product ( NI−HSO3 ) could be specifically oxidized to form the original C=C bond of NI , recovering the fluorescence emission and color. The detection limits of NI for HSO3 and NI−HSO3 for H2O2 were calculated to be 2.05 μM and 4.23 μM, respectively. The reversible fluorescence response of NI towards HSO3/H2O2 couple can be repeated for at least five times. NI is reliable at a broad pH range (pH 3.0–11.5) and features outstanding selectivity, which enabled its practical applications in biological and food samples. Monitoring the reversible and dynamic inter-conversion between HSO3 and H2O2 in vitro and in vivo has been verified by fluorescence imaging in live HeLa cells, adult zebrafish and nude mice. Moreover, NI has been successfully applied to detect of HSO3 levels in food samples.  相似文献   

16.
Rate coefficients, k1(T), for the gas-phase reaction of the OH radical with furan-2,5-dione (maleic anhydride (MA), C4H2O3), a biomass burning related compound, were measured under pseudo–first-order conditions in OH using the pulsed laser photolysis–laser-induced fluorescence method over a range of temperature (283-374 K) and bath gas pressure (50-200 Torr; He or N2). k1(T) was found to be independent of pressure over this range with k1(283-374 K) = (1.55 ± 0.20) × 10−12 exp[(−410 ± 44)/T) cm3 molecule−1 s−1 and k1(296 K) = (3.93 ± 0.28) × 10−13 cm3 molecule−1 s−1, where the uncertainties are 2σ and the preexponential term includes the estimated systematic error. The atmospheric lifetime of MA with respect to OH reactive loss is estimated to be ∼15 days. The present results are compared with a previous room temperature relative rate study of the OH + MA reaction, and the significant discrepancy between the studies is discussed; the present results are approximately a factor of 4 lower. It is also noteworthy that the experimentally measured k1(296 K) value obtained in this work is nearly a factor of 110 less than estimated by a structure activity relationship based on trends in ionization potential. Based in part on a computational evaluation, an atmospheric degradation mechanism of MA is proposed.  相似文献   

17.
在KH2PO4- Na2HPO4缓冲溶液中,离子缔合物[MB]+·[B(C6H5)4]–可发射强而稳定的荧光,牛血清蛋白(BSA)能使[MB]+·[B(C6H5)4]–的荧光信号显著猝灭,聚乙二醇(PEG)对荧光信号猝灭的有强的增敏作用,加PEG比不加PEG时,ΔF(= F0-F,其中,F0与F分别为试剂空白和试液的荧光强度)值提高了9.1倍,且ΔF与BSA含量具有良好的线性关系,据此建立了新型荧光探针荧光猝灭法测定痕量蛋白质的新方法。本方法的线性范围为0.11 ~ 88.0 ag/mL,检出限:22.0 ag /mL BSA,灵敏度很高,并成功用于人血清样品中蛋白含量的测定。同时探讨了新方法的反应机理。在相同条件下,新方法可分别测定BSA、人血清白蛋白(human serum albumin,HAS)、卵蛋白(ovalbumin,OVA )、γ-球蛋白(γ-globulin,γ-G)及血清、脑脊液样品中蛋白质总量。  相似文献   

18.
The reactions of N2O with NO and OH radicals have been studied using ab initio molecular orbital theory. The energetics and molecular parameters, calculated by the modified Gaussian-2 method (G2M), have been used to compute the reaction rate constants on the basis of the TST and RRKM theories. The reaction N2O + NO → N2 + NO2 (1) was found to proceed by direct oxygen abstraction and to have a barrier of 47 kcal/mol. The theoretical rate constant, k1 = 8.74 × 10−19 × T2.23 exp (−23,292/T) cm3 molecule−1 s−1, is in close agreement with earlier estimates. The reaction of N2O with OH at low temperatures and atmospheric pressure is slow and dominated by association, resulting in the HONNO intermediate. The calculated rate constant for 300 K ≤ T ≤ 500 K is lower by a few orders than the upper limits previously reported in the literature. At temperatures higher than 1000 K, the N2O + OH reaction is dominated by the N2 + O2H channel, while the HNO + NO channel is slower by 2–3 orders of magnitude. The calculated rate constants at the temperature range of 1000–5000 K for N2O + OH → N2 + O2H (2A) and N2O + OH → HNO + NO (2B) are fitted by the following expressions: in units of cm3 molecule −1s−1. Both N2O + NO and N2O + OH reactions are confirmed to enhance, albeit inefficiently, the N2O decomposition by reducing its activation energy. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
In order to develop a new long alkane chain pterin that leaves the pterin core largely unperturbed, we synthesized and photochemically characterized decyl pterin‐6‐carboxyl ester (CapC) that preserves the pterin amide group. CapC contains a decyl‐chain at the carboxylic acid position and a condensed DMF molecule at the N2 position. Occupation of the long alkane chain on the pendent carboxylic acid group retains the acid–base equilibrium of the pterin headgroup due to its somewhat remote location. This new CapC compound has relatively high fluorescence emission and singlet oxygen quantum yields attributed to the lack of through‐bond interaction between the long alkane chain and the pterin headgroup. The calculated lipophilicity is higher for CapC compared to parent pterin and pterin‐6‐carboxylic acid (Cap) and comparable to previously reported O‐ and N‐decyl‐pterin derivatives. CapC's binding constant Kb (8000 M?1 in Lα‐phosphatidylcholine from egg yolk) and ΦF? ratio (0.26:0.40) point to a unique triple function compound, although the hydrolytic stability of CapC is modest due to its ester conjugation. CapC is capable of the general triple action not only as a membrane intercalator, but also fluorophore and 1O2 sensitizer, leading to a “self‐monitoring” membrane fluorescent probe and a membrane photodamaging agent.  相似文献   

20.
合成了携带有丹磺酰基荧光团和(1R,2R)- 或(1S,2S)-1,2-二苯基乙二胺键合单元的双臂杯[4]芳烃手性阴离子受体(1和2)。通过荧光光谱检测了受体对手性氨基酸阴离子的键和能力。非线型曲线拟合的结果表明受体(1或2)与N-乙酰基-L或D-天冬氨酸盐通过多重氢键的相互作用形成了1:1的络合物。并且展现了对N-乙酰基天冬氨酸盐对映体良好的对映选择性的荧光识别(受体1: Kass(D)/ Kass(L)=6.74;受体2: Kass(L)/ Kass (D)=6.48)。明显不同的荧光响应说明受体1和2能被用作为对N-乙酰基天冬氨酸盐的荧光化学传感器。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号