首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and dl-alpha-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H(2)O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.  相似文献   

2.
Mn(II), Co(II), Ni(II) and Cu(II) complexes of 5‐mercapto‐1,2,4‐triazol‐3‐imine‐2′‐hydroxynaphthaline have been synthesized and characterized by elemental analysis, IR, 1H NMR, EI‐mass, UV‐Vis, and ESR (electron spin resonance) spectra, molar conductance, magnetic moment measurements, DC conductivity and thermogravimetric analysis. IR spectra confirm that the ligand molecule existed in both thione and thiole forms. The molar conductance values indicate the complexes are nonelectrolyte. The magnetic moment values of the complexes display paramagnetic behavior. All studies confirm the formation of an octahedral geometry for complex 1 and the other complexes have tetrahedral geometrical structures. The structures of the complexes have also been theoretically studied by using the molecular mechanic calculations by the hyperchem. 8.03 molecular modeling program which confirm the proposed structures. The Schiff‐base ligand and its metal complexes have also been screened for their antimicrobial activities.  相似文献   

3.
The tetradentate Schiff base ligand (SB), N,N′‐bis‐(2‐mercaptophenylimine)‐2,5‐thiophenedicarboxaldehyde was prepared via condensation of 2,5‐thiophene‐dicarboxaldehyde with 2‐aminothiophenol in a 1:2 molar ratio by conventional method. Additionally, its Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized and fully characterized by elemental analysis, FT‐IR, 1H NMR, 13C NMR, UV–Vis, ESR, ESI‐mass, conductivity and magnetic susceptibility measurements. Spectral studies suggested that, the Schiff base coordinate metal ions through the azomethine N‐ and deprotonated thiol S‐ atoms. Based on UV–Vis absorption and magnetic susceptibility data, tetrahedral geometry was assigned for both Co(II) and Zn(II) complexes, whereas on the other hand, square planar geometry for both Ni(II) and Cu(II) complexes. The Schiff base and its metal complexes were screened for their in vitro antimicrobial activity by minimum inhibitory concentration (MIC) method. Free radical scavenging activity of the novel compounds was determined by elimination of 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) radicals. In addition, the interactions of the free ligand and its complexes with calf thymus DNA (CT‐DNA) were explored using absorption, emission and viscosity measurements techniques.  相似文献   

4.
The Schiff base ligand was prepared from 4-aminoantipyrine, acetamide, and m-phenylenediamine. Metal salts used for the synthesis of these complexes are Co(II), Ni(II), Cu(II), and Zn(II) acetates. The elemental analysis results are in accordance with proposed formula assigned to these complexes. In the IR spectra, the imine band is shifted to a lower wave number in the complexes. UV spectra and magnetic susceptibility measurements proposed square planar geometry for Co(II), Ni(II), and Cu(II) complexes and tetrahedral geometry for Zn(II) complex. The grain size of the metal complexes was estimated by the Scherrer formula using powder XRD. In the present study, the ligand and its metal complexes are found to be nanocrystalline. Thermal decomposition pattern is in agreement with the proposed formula of the complexes. Irreversible redox behavior of the complex was identified by cyclic voltammetric analysis. The photocatalytic activity of the synthesized complexes are high under UV-spectra using methylene blue dye. DNA studies reveal that the synthesized complexes exhibit both DNA cleavage and DNA binding properties. Antibacterial and antifungal activities were done by the minimum inhibitory concentration (MIC) method. Anticancer activity shows that Cu(II) complex has the highest cytotoxic effect in SK-MEL-28 cell line.  相似文献   

5.
The alternating copolymer poly(3-nitrobenzylidene-1-naphthylamine-co-succinic anhydride) was synthesized from the Schiff base, 3-nitrobenzylidene-1-naphthylamine and succinic anhydride using hydroquinone monomethyl ether under nitrogen atmosphere. The molecular weight of the copolymer was determined by gel permeation chromatography. The metal-polymer complexes were synthesized by the reaction of THF solution of the alternating copolymer with aqueous solution of Cu(II) and Ni(II) acetates. The elemental analysis of the metal-polymer complexes suggests that the metal to ligand ratio is 1:2. The IR spectral data indicate that the metal ions are coordinated through the oxygen of the keto and ester groups. The UV-Visible, magnetic moments and ESR studies indicate square planar geometry for Cu(II) and distorted octahedral geometry for Ni(II) complexes. XRD studies revealed that the copolymer and its Cu(II) complex are crystalline, while the Ni(II) complex is amorphous. The intrinsic viscosity of the copolymer, thermal properties of metal-polymer complexes and their catalytic activity are discussed.  相似文献   

6.
New Co(II), Ni(II), and Cu(II) complexes were synthesized with the Schiff base ligand obtained by the condensation of sulfathiazole with salicylaldehyde. Their characterization was performed by elemental analysis, molar conductance, spectroscopic techniques (IR, diffuse reflectance and UV–Vis–NIR), magnetic moments, thermal analysis, and calorimetry (thermogravimetry/derivative thermogravimetry/differential scanning calorimetry), while their morphological and crystal systems were explained on the basis of powder X-ray diffraction results. The IR data indicated that the Schiff base ligand is tridentate coordinated to the metallic ion with two N atoms from azomethine group and thiazole ring and one O atom from phenolic group. The composition of the complexes was found to be of the [ML2]∙nH2O (M = Co, n = 1.5 (1); M = Ni, n = 1 (2); M = Cu, n = 4.5 (3)) type, having an octahedral geometry for the Co(II) and Ni(II) complexes and a tetragonally distorted octahedral geometry for the Cu(II) complex. The presence of lattice water molecules was confirmed by thermal analysis. XRD analysis evidenced the polycrystalline nature of the powders, with a monoclinic structure. The unit cell volume of the complexes was found to increase in the order of (2) < (1) < (3). SEM evidenced hard agglomerates with micrometric-range sizes for all the investigated samples (ligand and complexes). EDS analysis showed that the N:S and N:M atomic ratios were close to the theoretical ones (1.5 and 6.0, respectively). The geometric and electronic structures of the Schiff base ligand 4-((2-hydroxybenzylidene) amino)-N-(thiazol-2-yl) benzenesulfonamide (HL) was computationally investigated by the density functional theory (DFT) method. The predictive molecular properties of the chemical reactivity of the HL and Cu(II) complex were determined by a DFT calculation. The Schiff base and its metal complexes were tested against some bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis). The results indicated that the antibacterial activity of all metal complexes is better than that of the Schiff base.  相似文献   

7.
The Schiff base ligand, pyrral-l-histidinate(L) and its Co(II), Ni(II), Cu(II) and Zn(II) complexes were synthesized and characterized by elemental analysis, mass, molar conductance, IR, electronic, magnetic measurements, EPR, redox properties, thermal studies, XRD and SEM. Conductance measurements indicate that the above complexes are 1:1 electrolytes. IR data show that the ligand is tridentate and the binding sites are azomethine nitrogen, imidazole nitrogen and carboxylato oxygen atoms. Electronic spectral and magnetic measurements indicate tetrahedral geometry for Co(II) and octahedral geometry for Ni(II) and Cu(II) complexes, respectively. The observed anisotropic g values indicate the presence of Cu(II) in a tetragonally distorted octahedral environment. The redox properties of the ligand and its complexes have been investigated by cyclic voltammetry. Thermal decomposition profiles are consistent with the proposed formulations. The powder XRD and SEM studies show that all the complexes are nanocrystalline. The in vitro biological screening effects of the synthesized compounds were tested against the bacterial species, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa and Staphylococcus aureus; fungal species, Aspergillus niger, Aspergillus flavus and Candida albicans by the disc diffusion method. The results indicate that complexes exhibit more activity than the ligand. The nuclease activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence and absence of H2O2.  相似文献   

8.
Complexes of Co(II), Ni(II) and Cu(II) with the Schiff base (LH) derived from ceftazidime and salicylaldehyde were synthesized. The proposed structures of the new metal complexes based on the results of elemental analyses, molar conductivity, IR, DRUV and 1H NMR spectra, effective magnetic moment and thermal analysis were discussed. The surface morphology of Schiff base and metal complexes was studied by SEM. The composition of the metal complexes was ML2, where L is the deprotonated Schiff base ligand and M = Co(II), Ni(II) and Cu(II). IR spectral data indicated the Schiff base ligand being bidentately coordinated to the metallic ions with N and O atoms from azomethine and phenolic groups. All the complexes have square-planar geometry and are nonelectrolytes. The thermal analysis recorded that TG, DTG, DTA and DSC experiments confirmed the assigned composition and gave information about the thermal stability of complexes in dynamic air atmosphere. Theoretical investigation of the molecular structure of Schiff base ligand and its complexes was studied using programs dedicated to chemical modeling and quantomolecular calculation of chemical properties. The newly synthesized complexes were tested for in vitro antibacterial activity against selected Gram-negative and Gram-positive bacterial strains, and they exhibited an antibacterial activity superior to that of the Schiff base ligand.  相似文献   

9.
Co(II), Ni(II), Cu(II) and Zn(II) Schiff base complexes derived from 3-hydrazinoquionoxaline-2-one and 1,2-diphenylethane-1,2-dione were synthesized. The compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV–vis, 1H NMR, 13C NMR, ESR, and mass spectral studies. Thermal studies of the ligand and its metal complexes were also carried out to determine their thermal stability. Octahedral geometry has been assigned for Co(II), Ni(II), and Zn(II) complexes, while Cu(II) complex has distorted octahedral geometry. Powder XRD study was carried out to determine the grain size of ligand and its metal complexes. The electrochemical behavior of the synthesized compounds was investigated by cyclic voltammetry. For all complexes, a 2 : 1 ligand-to-metal ratio is observed. The ligand and its metal complexes were screened for their activity against bacterial species such as E. coli, P. aeruginosa, and S. aureus and fungal species such as A. niger, C. albicans, and A. flavus by disk diffusion method. The DNA-binding of the ligand and its metal complexes were investigated by electronic absorption titration and viscosity measurement studies. Agarose gel electrophoresis was employed to determine the DNA-cleavage activity of the synthesized compounds. Density functional theory was used to optimize the structure of the ligand and its Zn(II) complex.  相似文献   

10.
Novel zinc(II), copper(II), and cobalt(II) complexes of the Schiff base derived from 2‐hydroxy‐1‐naphthaldehyde and D, L ‐selenomethionine were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements and powder XRD. The analytical data showed the composition of the metal complex to be ML(H2O), where L is the Schiff base ligand and M = Co(II), Cu(II) and Zn(II). IR results confirmed the tridentate binding of the Schiff base ligand involving azomethine nitrogen, naphthol oxygen and carboxylato oxygen atoms. 1H NMR spectral data of lithium salt of the Schiff base ligand [Li(HL)] and ZnL(H2O) agreed with the proposed structures. The conductivity values of complexes between 12.50 and 15.45 S cm2 mol?1 in DMF suggested the presence of non‐electrolyte species. The powder XRD studies indicated that Co(II) complex is amorphous, whereas Cu(II) and Zn(II) complexes are crystalline. The results of antibacterial and antifungal screening studies indicated that Li(HL) and its metal complexes are active, but CuL(H2O) is most active among them. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from indole-3-carboxaldehyde and m-aminobenzoic acid were synthesized and characterized by elemental analysis, molar conductance, IR, UV–Vis, magnetic moment, powder XRD and SEM. The IR results demonstrate the bidentate binding mode of the ligand involving azomethine nitrogen and carboxylato oxygen atoms. The electronic spectral and magnetic moment results indicate that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex is square planar. Powder XRD and SEM indicate the crystalline state and surface morphology studies of the complexes. The antimicrobial activity of the synthesized ligand and its complexes were screened by disc diffusion method. The results show that the metal complexes were found to be more active than the ligand. The nuclease activity of the ligand and its complexes were assayed on CT DNA using gel electrophoresis in the presence of H2O2. The Cu(II) complex showed increased nuclease activity in the presence of an oxidant when compared to the ligand and other complexes.  相似文献   

12.
The Schiff base ligand, N,N'-bis-(2-thiophenecarboxaldimine)-3,3'-diaminobenzidine (L) obtained from condensation of 2-thiophenecarboxaldehyde and 3,3'-diaminobenzidine, was used to synthesize the complexes of type, [M2L2]Cl4 [M=Co(II), Ni(II), Cu(II), Cd(II) and Hg(II)]. The newly synthesized ligand (L) was characterized on the basis of the results of elemental analysis, FT-IR, 1H NMR, 13C NMR, mass spectroscopic studies and single crystal X-ray crystallography. The characteristic resonance signals in 1H NMR and 13C NMR spectra indicated the presence of azomethine group as a result of condensation reaction. The stoichiometry, bonding and stereochemistries of complexes were ascertained on the basis of results of elemental analysis, magnetic susceptibility measurements, molar conductance and spectroscopic studies viz., FT-IR, 1H and 13C NMR, UV-vis and EPR. EPR, UV-vis and magnetic moment data revealed an octahedral geometry for complexes with distortion in Cu(II) complex and conductivity data show 1:2 electrolytic nature of complexes. Absoption and fluorescence spectroscopic studies supported that Schiff base ligand L and its Co(II), Ni(II) and Cu(II) complexes exhibited significant binding to calf thymus DNA. The complexes exhibited higher affinity to calf thymus DNA than the free Schiff base ligand L.  相似文献   

13.
A bidentate/tridentate 5-bromosalycilaldehyde isonicotinoylhydrazone Schiff base was synthesized by condensing 5-bromosalycilaldehyde with isonicotinoylhydrazine. Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes of this chelating ligand were synthesized using nitrates of these metals. The ligand and the complexes were characterized by elemental analysis, UV–Vis, IR and EPR spectroscopy, conductance and magnetic susceptibility measurements, fluorescence, cyclic voltammetry and thermogravimetric analysis. The ligand and Zn(II) complex exhibits solid-state photoluminescence at room temperature.  相似文献   

14.
《Journal of Coordination Chemistry》2012,65(17-18):1611-1619
Two new series of mononuclear and homobinuclear Co(II), Ni(II) and Cu(II) complexes with mono- and bis-azo compounds derived from 2,7-dihydroxynaphthalene and anthranilic acid or o-aminophenol are prepared and characterized by elemental and thermal analyses, conductance, IR, electronic, ESR spectra and magnetic moment measurements. The ligand field splitting parameters and Racah constant are calculated. The spectral and magnetic results obtained are utilized to determine the geometries around the metal(II) ion. The geometry of the complex formed depends on the structure of the ligand and the type of metal(II) ion. The mode of bonding of the ligand with the metal ions is deduced from IR spectra.  相似文献   

15.
A Schiff base (L) is prepared by condensation of cuminaldehyde and L-histidine, and characterized by elemental analysis, IR, UV-Vis, 1H-NMR, 13C-NMR, and mass spectra. Co(II), Ni(II), Cu(II), and Zn(II) complexes of this Schiff-base ligand are synthesized and characterized by elemental analysis, molar conductance, mass, IR, electronic spectra, magnetic moment, electron spin resonance (ESR), CV, TG/DTA, powder XRD, and SEM. The conductance data indicate that all the complexes are 1 : 1 electrolytes. IR data reveal that the Schiff base is a tridentate monobasic donor, coordinating through azomethine nitrogen, imidazole nitrogen, and carboxylato oxygen. The electronic spectral data and magnetic measurements suggest that Co(II) and Ni(II) complexes are tetrahedral, while Cu(II) complex has distorted square planar geometry. XRD and SEM show that Co(II), Cu(II), and Zn(II) complexes have crystalline nature, while the Ni(II) complex is amorphous and the particles are in nanocrystalline phase. The in vitro biological activities of the synthesized compounds were tested against the bacterial species, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, and Staphylococcus aureus; and fungal species, Aspergillus niger, Aspergillus flavus, and Candida albicans by the disc diffusion method. The biological study indicates that complexes exhibit more activity than the ligand. The nuclease activity of the ligand and its complexes are assayed on CT DNA using gel electrophoresis in the presence and the absence of H2O2. The Cu(II) complex shows increased nuclease activity in the presence of an oxidant when compared to the ligand, Co(II) and Ni(II) complexes.  相似文献   

16.
A new Schiff base ligand was prepared by condensation of 2-hydroxy-4-methoxybenzaldehyde with 1,2-propanediamine. The ligand and its metal complexes were characterized by elemental analysis, FT-IR, 1H and 13C NMR, magnetic moment, molar conductance, UV-Vis, SEM and thermal analysis (TGA). The molar conductance measurements indicated that all the metal complexes were non-electrolytes. IR spectra showed that ligand (L) behaves as a neutral tetradentate ligand and binds to the metal ions by the two azomethine nitrogen atoms and two phenolic oxygen atoms. The electronic absorption spectra and magnetic susceptibility measurements indicated square planar geometry for the Ni(II) and Cu(II) complexes while other metal complexes showed tetrahedral geometry. Also the surface morphology of the complexes was studied by SEM.  相似文献   

17.
A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited higher antibacterial activities.  相似文献   

18.
A novel macrocyclic tetradentate ligand 1,5,8,12-tetraaza-2,4,9,11-tetraphenyl-6,7:13,14-dibenzocyclohexadeca- 1,4,8,11-tetraene (L) has been synthesized. Cobalt(II), nickel(II), and copper(II) complexes of this ligand have been prepared and characterized by elemental analysis, molar conductance measurements, magnetic susceptibitity measurements, and mass, IR, electronic, and ESR spectral studies. The molar conductance measurements correspond to a nonelectrolytic nature for all the complexes, which can be formulated as [M(L)X2] (where M = Co(II), Ni(II), and Cu(II); X = Cl and NO3). On the basis of IR, electronic, and ESR spectral studies, an octahedral geometry has been assigned to the Co(II) and Ni(II) complexes, whereas a tetragonal geometry was found for the Cu(II) complexes. The investigated compounds and uncomplexed metal salts and the ligands were tested against bacterial species like Sarcina lutea, Escherchia coli, and Staphylococcus aureus. The metal complexes have higher activity than the free ligand and metal salts. The text was submitted by the authors in English.  相似文献   

19.
The Schiff base ligand, N,N'-bis-(2-furancarboxaldimine)-3,3'-diaminobenzidene (L) obtained by condensation of 2-furaldehyde and 3,3'-diaminobenzidene, was used to synthesize the mononuclear complexes of the type, [M(L)](NO3)2 [M=Co(II), Ni(II), Cu(II) and Zn(II)]. The newly synthesized ligand, (L) and its complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, 1H and 13C NMR, mass, UV-vis and EPR. EPR, UV-vis and magnetic moment data revealed a square planar geometry for the complexes with distortion in Cu(II) complex and conductivity data show a 1:2 electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that Schiff base ligand, L and its Cu(II) and Zn(II) complex exhibit significant binding to calf thymus DNA. The highest binding affinity in case of L may be due to the more open structure as compared to the metal coordinated complexes.  相似文献   

20.
Four new mononuclear metal complexes with a mononucleating Schiff base ligand containing two thiadiazoles units have been synthesized. The ligand and metal complexes were characterized by elemental analyses, IR, 1H, and 13C NMR, UV–vis, ESR, electrospray ionization mass spectra, and magnetic susceptibility measurements. Electronic spectra, magnetic susceptibility measurement, and molecular modeling studies support octahedral geometry around the Ni(II), Cu(II), and Zn(II) ions. The magnetic properties were investigated, and ferromagnetic coupling is observed in Cu(II) and Ni(II) complexes. In addition, total energy and heat of formation calculated for conformers of the Schiff base ligand by the semiempirical AM1 calculations have shown that E,Z‐isomer of the ligand is more stable (about 5.3 kcal/mol) than E,E‐ and Z,Z‐isomers. © 2008 Wiley Periodicals, Inc. Heteroatom Chem 19:700–712, 2008; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20496  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号