首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates impulsive chaotic synchronization of discrete-time switched systems with state-dependent switching strategy. The parameter-dependent Lyapunov function (PDLF) technique is used to establish stability criteria for a class of switched systems consisting of both stable and unstable subsystems. With these criteria, sufficient conditions are given to achieve observer-based impulsive chaotic synchronization. Examples are presented to illustrate the criteria.  相似文献   

2.
The problem of reliable impulsive lag synchronization for a class of nonlinear discrete chaotic systems is investigated in this paper. Firstly a reliable impulsive controller is designed by the impulsive control theory. Then, some sufficient conditions for reliable impulsive lag synchronization between the drive system and the response system are obtained. Numerical simulations are given to show the effectiveness of the proposed method.  相似文献   

3.
Research on chaos synchronization of dynamical systems has been largely reported in literature. However, synchronization of different structure—uncertain dynamical systems—has received less attention. This paper addresses synchronization of a class of time-delay chaotic systems containing uncertain parameters. A unified scheme is established for synchronization between two strictly different time-delay uncertain chaotic systems. The synchronization is successfully achieved by designing an adaptive controller with the estimates of the unknown parameters and the nonlinear feedback gain. The result is rigorously proved by the Lyapunov stability theorem. Moreover, we illustrate the application of the proposed scheme by numerical simulation, which demonstrates the effectiveness and feasibility of the proposed synchronization method.  相似文献   

4.
The problem of synchronizing a unified chaotic system in the presence of parameter variations, unstructured uncertainties, and external disturbances is addressed. To tackle such perturbations whose bounds may be unknown, two robust adaptive algorithms are proposed. The stability analysis is presented based on the Lyapunov stability theorem. Simulation results demonstrate the performance of the developed synchronization schemes.  相似文献   

5.
The exponential synchronization problem is studied in this paper for a class of chaotic Lur’e systems by using delayed feedback control. An augmented Lyapunov functional based approach is proposed to deal with this issue. A delay-dependent condition is established such that the controlled slave system can exponentially synchronize with the master system. It is shown that the delayed feedback gain matrix and the exponential decay rate can be obtained by solving a set of linear matrix inequalities. The decay coefficient can be also easily calculated. Finally, as an example, the Chua’s circuit is used to illustrate the effectiveness of the developed approach and the improvement over some existing results.  相似文献   

6.
A double function Q–S synchronization (DFQSS) scheme of non-identical chaotic systems is proposed and analyzed with the assumption that all of the parameters are unknown. The sufficient conditions for achieving the double function Q–S synchronization with the desired scaling functions of two different chaotic systems (including the systems of non-identical dimension) are derived based on Lyapunov stability theory. By the adaptive control technique, the control laws and the corresponding parameter update laws are presented such that the DFQSS of non-identical chaotic systems is to be achieved. Numerical simulations and a brief discussion conclude the paper.  相似文献   

7.
This paper addresses the reliable synchronization problem between two non-identical chaotic fractional order systems. In this work, we present an adaptive feedback control scheme for the synchronization of two coupled chaotic fractional order systems with different fractional orders. Based on the stability results of linear fractional order systems and Laplace transform theory, using the master-slave synchronization scheme, sufficient conditions for chaos synchronization are derived. The designed controller ensures that fractional order chaotic oscillators that have non-identical fractional orders can be synchronized with suitable feedback controller applied to the response system. Numerical simulations are performed to assess the performance of the proposed adaptive controller in synchronizing chaotic systems.  相似文献   

8.
This paper addresses a unified mathematical expression describing a class of chaotic systems, for which the problem of synchronization and anti-synchronization between different chaotic systems with fully uncertain parameters and different structure are studied. Based on the Lyapunov stability theory, a novel, simple, and systemic adaptive synchronization controller is designated, the analytic expression of the controller and the adaptive laws of parameters are developed. Moreover, the proposed scheme can be extended to anti-synchronize a class of chaotic systems. Two chaotic systems with different structure and fully uncertain parameters are employed as the examples to show the effectiveness of the proposed adaptive synchronization and anti-synchronization schemes. Additionally, the robustness and noise immunity of the adaptive synchronization scheme is investigated by measuring the mean squared error of the systems.  相似文献   

9.
Based on Rikitake system, a new chaotic system is discussed. Some basic dynamical properties, such as equilibrium points, Lyapunov exponents, fractal dimension, Poincaré map, bifurcation diagrams and chaotic dynamical behaviors of the new chaotic system are studied, either numerically or analytically. The obtained results show clearly that the system discussed is a new chaotic system. By utilizing the fractional calculus theory and computer simulations, it is found that chaos exists in the new fractional-order three-dimensional system with order less than 3. The lowest order to yield chaos in this system is 2.733. The results are validated by the existence of one positive Lyapunov exponent and some phase diagrams. Further, based on the stability theory of the fractional-order system, projective synchronization of the new fractional-order chaotic system through designing the suitable nonlinear controller is investigated. The proposed method is rather simple and need not compute the conditional Lyapunov exponents. Numerical results are performed to verify the effectiveness of the presented synchronization scheme.  相似文献   

10.
In this paper, an adaptive synchronization scheme is proposed for a class of nonlinear systems. The design utilizes an adaptive observer, which is quite useful in establishing a transmitter–receiver kind of synchronization scheme. The proposed approach is based on contraction theory and provides a very simple way of establishing exponential convergence of observer states to actual system states. The class of systems addressed here has uncertain parameters, associated with the part of system dynamics that is a function of measurable output only. The explicit conditions for the stability of the observer are derived in terms of gain selection of the observer. Initially, the case without uncertainty is considered and then the results are extended to the case with uncertainty in parameters of the system. An application of the proposed approach is presented to synchronize the family of N chaotic systems which are coupled through the output variable only. The numerical results are presented for designing an adaptive observer for the chaotic Chua system to verify the efficacy of the proposed approach. Explicit bounds on observer gains are derived by exploiting the properties of the chaotic attractor exhibited by Chua’s system. Convergence of uncertain parameters is also analyzed for this case and numerical simulations depict the convergence of parameter estimates to their true value.  相似文献   

11.
This paper investigates the chaos synchronization of two bidirectionally coupled chaotic systems. In comparison with previous methods (identical bidirectionally coupled synchronization), the present control scheme is different bidirectionally coupled synchronization, which includes different complete bidirectionally coupled synchronization and different partial bidirectionally coupled synchronization. Based on the Lasalle invariance principle, adaptive schemes are designed to make two different bidirectionally coupled chaotic systems asymptotically synchronized, and unknown parameters are identified simultaneously in the process of synchronization. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

12.
This paper discusses the synchronization and anti-synchronization of new uncertain unified chaotic systems (UUCS). Based on the idea of active control, a novel active Pinning control strategy is presented, which only needs a state of new UUCS. The proposed controller can achieve synchronization between a response system and a drive system, and ensure the synchronized robust stability of new UUCS. Numerical simulations of new UUCS show that the controller can make chaotic systems achieve synchronization or anti-synchronization in a quite short period and both are of good robust stability.  相似文献   

13.
This paper is concerned with finite-time chaos control of unified chaotic systems with uncertain parameters. Based on the finite-time stability theory in the cascade-connected system, a nonlinear control law is presented to achieve finite-time chaos control. The controller is simple and easy to be constructed. Simulation results for Lorenz, Lü, and Chen chaotic systems are provided to illustrate the effectiveness of the proposed scheme. Supported by the National Natural Science Foundation of China (Grant No. 60674024).  相似文献   

14.
Integral-based event-triggered synchronization criteria are firstly presented for networked chaotic systems with proportional-derivative (PD) control. The event-triggered scheme effectively utilizes network resources; however, the PD-type control subject to the conventional triggering inequality may cause excessive triggering and have difficulty in obtaining a feasible solution. To solve these problems, the integrated event-triggering inequality is employed and the modified integral inequality with free-weighting matrix is proposed to fill the empty diagonal terms, which overcomes the difficulties of the integration of delayed signal vectors upon integral event-triggering condition. Based on Lyapunov stability, the synchronization criteria are derived as linear matrix inequalities. Finally, the effectiveness of the integral-based event-triggered synchronization method is demonstrated by numerical examples.  相似文献   

15.
This paper presents a predictive synchronization method for discrete-time chaotic Lur’e systems with input constraints by using time-varying delayed feedback control. Based on the model predictive control scheme, a delay-dependent stabilization criterion is derived for the synchronization of chaotic systems that is represented by Lur’e systems with input constraints. By constructing a suitable Lyapunov–Krasovskii functional and combining with a reciprocally convex combination technique, a delay-dependent stabilization condition for synchronization is obtained via linear matrix inequality (LMI) formulation. The control inputs are obtained by solving a min-max problem subject to cost monotonicity, which is expressed in terms of LMIs. The effectiveness of the proposed method will be verified throughout a numerical example.  相似文献   

16.
This paper deals with a fractional calculus based control strategy for chaos suppression in the 3D chaotic systems. It is assumed that the structure of the controlled chaotic system has only one control input. In the proposed strategy, the controller has three tuneable parameters and the control input is constructed as fractional-order integration of a linear combination of linearized model states. The tuning procedure is based on the stability theorems in the incommensurate fractional-order systems. To evaluate the performance of the proposed controller, the design method is applied to suppress chaotic oscillations in a 3D chaotic oscillator and in the Chen chaotic system.  相似文献   

17.
This paper revisits the problem of synchronization for general Lurie systems with time-delay feedback control. Differently from most of existing results, the more restrictively slope restrictions on the nonlinearities of Lurie systems are considered in view of the fact that the slope restrictions may improve synchronization conditions compared with the sector ones. The Kalman–Yakubovich–Popov (KYP) lemma and the Schur complement formula are applied to get novel and less conservative synchronization criteria, which have the forms of linear matrix inequalities (LMIs). Numerical examples are presented to illustrate the efficiency of the proposed results.  相似文献   

18.
Based on one drive system and one response system synchronization model, a new type of combination–combination synchronization is proposed for four identical or different chaotic systems. According to the Lyapunov stability theorem and adaptive control, numerical simulations for four identical or different chaotic systems with different initial conditions are discussed to show the effectiveness of the proposed method. Synchronization about combination of two drive systems and combination of two response systems is the main contribution of this paper, which can be extended to three or more chaotic systems. A universal combination of drive systems and response systems model and a universal adaptive controller may be designed to our intelligent application by our synchronization design.  相似文献   

19.
Coexisting periodic solutions of a dynamical system describing nonlinear optical processes of the second-order are studied. The analytical results concern both the simplified autonomous model and the extended nonautonomous model, including the pump and damping mechanism. The neighborhood of periodic solutions is studied numerically, mainly in phase portraits. As a result of disturbance, for example detuning, the periodic solutions are shown to escape to other states, periodic, quasiperiodic, or chaotic. The chaotic behavior is indicated by the Lyapunov exponents. We also investigate selected aspects of synchronization (unidirectional or mutual) of two identical systems being in two different coexisting states. The effects of quenching the oscillations are shown. The quenching seems very promising for design of some advanced signal processing.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号