首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The relaxation mechanisms present in a side‐chain liquid crystalline polymer have been studied by Thermally Stimulated Depolarization Currents (t.s.d.c.), in a wide temperature range covering the glassy state, the glass transition region, and the liquid crystalline phase. The thermal sampling procedure was used to decompose the complex relaxations into its narrowly distributed components. Three relaxation mechanisms were observed in this polymer: a relaxation below the glass transition temperature that is broad and extends from −150°C up to −110°C, the glass transition relaxation whose maximum intensity appears at ∼20°C, and a relaxation above the glass transition temperature, in the liquid crystalline phase. The attribution of these relaxations at the molecular level is discussed. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 227–235, 1999  相似文献   

2.
Piezoelectric, elastic, and dielectric properties of films of poly(β-hydroxybutyrate) (PHB), an optically active natural polymer, were measured as functions of frequency and temperature. In mechanical properties, three relaxation processes were observed at 10 Hz: the α dispersion at 130°C, the β dispersion at room temperature, and the γ dispersion at ?120°C. It was concluded from x-ray diffraction and the thermal expansion coefficient that the α dispersion can be ascribed to thermal molecular motions in the crystalline phase, that the β dispersion is the primary dispersion due to the glass transition, and that the γ dispersion is related to local molecular motion of the main chains in the amorphous phase. Piezoelectric relaxations were also observed in these relaxation regions. It is proposed that the high-temperature process is due to ionic dc conduction. The piezoelectric relaxation at room temperature is ascribed to the increase of piezoelectric activity in the oriented noncrystalline phase, in which the sign of the piezoelectric modulus is opposite to that in the oriented crystalline phase.  相似文献   

3.
Thermal, dielectric, and mechanical relaxation measurements on miscible blends of polybenzimidazole (PBI) and a polyetherimide (PEI, Ultem 1000) prepared by solution casting from dimethylacetamide (DMAc) reveal a number of structurally related features. Annealing below the glass transition temperature induces an enthalpy relaxation process typical of single-phase glasses of nonequilibrium structure. Dielectric relaxation experiments on samples annealed at ambient conditions reveal two relaxation processes below 400°C. At lower temperatures (50–200°C), the desorption of water is observed. Above 200°C in the first run, a composition-dependent relaxation is seen at the highest frequencies (100 kHz) while a relaxation approximately independent of composition appears in the second run. The latter corresponds to the glass transition of the PEI phase. The glass transition of PBI at this frequency is above the degradation temperature. At lower frequencies a strongly dispersive electrode polarization process masks the high-temperature relaxations. Dynamic mechanical results show similar features with respect to phase separation; the main difference is that the tan δ curves in the first run are complicated by the desorption of residual solvent.  相似文献   

4.
The thermal behavior of films of amorphous silk fibroin in the random-coil conformation has been investigated in the temperature range 25–220°C by differential scanning calorimetry (DSC), thermal expansion, dynamic mechanical measurements, x-ray diffraction, and infrared spectroscopy. As the temperature is raised, water is lost up to about 100°C. Intramolecular and intermolecular hydrogen bonds are broken between 150 and 180°C. The glass transition is observed at 173°C by DSC. The random-coil→β-form transition accompanied by reformation of hydrogen bonds takes place above 180°C. Thermally induced crystallization to the β-form crystals starts at about 190°C.  相似文献   

5.
Radiation-induced solid-state polymerization of cyclohexene sulfide has been investigated. Differential thermal analysis shows that this compound has a phase transition point at ?74°C and behaves as a plastic crystal in the temperature range from ?74 to ?20°C (melting point). By rapid cooling, this plastic crystal was easily supercooled, and below ?166°C a glassy crystal, i.e., a supercooled nonequilibrium state of plastic crystal, was obtained. In-source polymerization proceeded in the plastic crystalline state. Postpolymerization of glassy crystalline monomer irradiated at ?196°C occurred above ?166°C (glass transition point) during subsequent heating.  相似文献   

6.
We have studied cross-linking and thermal degradation of high-performance first-and second-generation PMR-15 polyimides, both thermoset and thermoplastic versions, by performing nonspectroscopic NMR solid echo T*2 relaxation measurements at temperatures up to 430°C using probes built for this purpose. We employ signal averaging and automated decomposition of the relaxation decays into two Gaussian components, the slower of which gradually appears above 300°C. Tracking the molecular mobility spectrum in terms of the relative intensity of the components and their relaxation times as temperature is cycled, we detect essentially no irreversible effects below the glass transition, measure permanent mobility reductions attributable to completion of cure, and find that exposure to temperatures above 380°C on the order of 1 h is required for substantial thermal degradation to occur. These results are closely supported by thermal and mechanical measurements on parallel specimens. Second-generation PMR resins appear to have higher microscopic rigidity and reduced viscous fraction at high temperatures. ©1995 John Wiley & Sons, Inc.  相似文献   

7.
The purpose of this work was to investigate the influence of thermal annealing and quenching on mechanical, and thermomechanical properties of acrylonitrile butadiene styrene (ABS). The free quenching was applied over a temperature range starting from a temperature slightly above Tg to temperatures below 0°C. The improvement of the impact strength is linked to the cavitation of the rubber particles close to the samples surface. The existence of a relaxation mode located around–10°C may participate to the relaxation of the residual stresses when the sample is quenched under 0°C, this phenomenon would promote cavitation.  相似文献   

8.
A second-order phase transition into the ferroelectric state was shown to occur in liquid water at −40°C. This finding was in agreement with several experiments with supercooled water, in which physical value singularities were observed at the specified temperature. The known maximum of water density at +4°C is a result of the joint action of thermal expansion and density fluctuations caused by closeness to the phase transition point.  相似文献   

9.
The thermal expansion of GeS has been studied above room temperature up to the melting point of 658 ± 5°C by X-ray diffraction techniques using a 190 mm diameter Unicam high temperature camera. The thermal expansion of the crystallographic axes is linear with distinct changes in the rate of expansion at about 250°C, 370°C and 510°C. No first-order structural transformation was observed for this system up to the melting point. The results of additional studies on GeTe are in general agreement with those of others and confirm trends in the thermal expansion behavior of the germanium monochalcogenide series.  相似文献   

10.
The thermal expansion of GeSe has been studied above room temperature up to the melting point of 670 ± 5°C by X-ray diffraction techniques using a 190 mm Unicam high temperature camera. The thermal expansion of the crystallographic axes is linear with a distinct change of the expansion coeffients for all axes above 400°C. The relative changes of the axes indicate a rearrangement of the structure towards cubic symmetry with increasing temperature. The transformation of GeSe from the orthorhombic to a normal NaCl-type structure is observed at 651 ± 5°C. The lattice parameter of the cubic form of GeSe is a0 = 5.730 ± 0.003 Å at 656°C. The GeSe lattice remains cubic up to the melting point.  相似文献   

11.
Molecular motion and relaxation studies using a thermal windowing thermally stimulated depolarization current (TW‐TSDC) were performed for aliphatic polyureas 7 and 9. Global thermally stimulated depolarization current gave three characteristic major peaks corresponding to the α, β, and γ relaxation modes at 78.5, −44, and −136°C for polyurea 7 and at 80, −50, and −134°C for polyurea 9, respectively. The α relaxation is related to the large‐scale molecular motion due to micro‐Brownian motion of long‐range segments. This relaxation is significantly related to the glass‐transition temperature. The β relaxation is caused by the local thermal motion of long‐chain segments. The γ relaxation is caused by the limited local motion of hydrocarbon sections. Temperature dependence of relaxation times was expressed well using Vogel–Tammann–Fulcher (VTF) expression. 3‐D simulation of dielectric constants of dielectric strength and loss factor were performed in the frequency range from 10−6 to 104 Hz and temperature range from −150 to 250°C, using the relaxation parameters obtained from the TW‐TSDC method. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 88–94, 2000  相似文献   

12.
Transitions and relaxation phenomena in poly(1,4-phenylene ether) were studied over temperature range from 100 to 800°K by applying a combination of calorimetric, dilatometric, dynamic mechanical, and dielectric techniques. Amorphous polymer, exhibiting no x-ray crystallinity, is obtained only by quenching molten samples at extremely fast cooling rates (ca. 1000°C/sec) and by minimizing thermal gradients within specimens. A weakly active mechanical relaxation region with a loss maximum at 155°K of unknown origin was observed. The glass transition interval of completely amorphous polymer is characterized by a discontinuous jump in heat capacity of 2.76 cal/deg per chain segment occurring at 363°K (corrected for kinetic effects), and a fourfold increase in the coefficient of linear thermal expansion. Strongly active, dynamic mechanical relaxations occur in the Tg interval with a loss maximum at 371°K (f = 110 cps) and resulting in a drop in the dynamic storage modulus from 1011 to 109 dyne/cm2. Cold crystallization takes place just above Tg, to yield a polymer with an x-ray crystallinity of 0.7 and a heat of crystallization of 270 cal/mole. The crystalline polymer shows a complex melt structure. Depending upon the thermal history, multiple endothermic peaks indicative of structural reorganizations occur just prior to fusion. Very high dielectric losses with a wide distribution of relaxation times were observed in the melt interval. The mechanical relaxation spectrum in this region is typical of viscous flow behavior.  相似文献   

13.
Phase transition of the layer structure of poly(p-benzenedithiol-co-p-diethylbenzene) obtained in solid state polymerization was studied by a thermal treatment or UV irradiation under a nitrogen atmosphere. The peak intensities in the X-ray diffraction diagram of polymers gradually decreased with the thermal treatment time above 55°C. Below 50°C the layer structure of polymers hardly changed. The apparent activation energy for the phase transition was about 15 Kcal/mol [63 KJ/mol] at the initial stage and gradually decreased to a few Kcal/mol [ca. 2 KJ/mol]. UV light from a high-pressure mercury lamp also gradually induced the phase transition from the layer structure to an amorphous one. The pristine polymer possesses phase transition points at 75, 95 and 130°C. The exothermic transition at 75°C can be understood as the thermal destruction of the semistable layer structure. The exothermic transition at 95°C may be correspond to the cis → trans thermal isomerization of the C?°C bond in the polymer main chain. The diffuse reflectance spectrum of the pristine polymer differed from that of the amorphous polymer obtained by the thermal treatment of the pristine polymer. SEM photographs of the pristine polymer showed a particular surface structure, i.e. entangled fibrous material. TEM photographs of the pristine polymer exhibited a bright valley-and-hill structure, whereas that of the amorphous polymer obtained by thermal treatment exhibited a plain surface.  相似文献   

14.
It is well known that polycarbonate annealed at 80–130°C undergoes gradual changes in mechanical properties. Annealing below Tg (ca. 150°C) results in a decrease in impact resistance and an increase in strength. Polycarbonate has three single relaxation processes and some distributed relaxation processes in the temperature range between 100 and 250°K (the β transition region). The effect of thermal pretreatment on the relaxation has been investigated by the thermally stimulated discharge current technique. Partial heating, peak cleaning, and theoretical fitting have also been performed and the activation parameters associated with the relaxation processes have also been calculated to assist in the analysis of the relationship between effects of annealing and structural motions in polycarbonate.  相似文献   

15.
The polydiacetylene (PDA) from the bis-n-propylurethane of 5,7-dodecadiyne-1,12-diol (PUDO) undergoes a first order phase transition near 135°C that is associated with a color change from blue at temperatures below the transition to red at temperatures above the transition. We have studied PDA-PUDO by solid state 13C nuclear magnetic resonance (NMR) spectra using cross polarization and magic angle spinning (CP-MAS) techniques at temperatures between 25° and 140°C. As observed previously, the acetylene carbon shift moves up field as the temperature is raised above the transition temperature. In addition, near 130°C, the oxymethylene carbon shows 3 resonances, indicating multiple side chain conformations as the PDA undergoes the phase transition.  相似文献   

16.
Polystyrene radically polymerized in atmosphere of air is composed of bisegment (C-A) or trisegment (C-A-C) block copolymers consisting of styrene segment (A) and styrene peroxide segment (C). Dielectric measurements of a system of copolymers of styrene and oxygen were obtained above the glass temperature. Three primary relaxations, a, b, and c, in order of descending temperature, were found corresponding to three microphases: styrene phase (phase a), styrene peroxide phase (phase c), and an intermediate phase (phase b) which contains a low concentration of peroxide bonds. An alternating copolymer of styrene and oxygen exhibits the relaxation c alone. With heat treatment above the glass temperature, relaxation c and subsequently relaxation b vanish with thermal degradation of peroxide bonds. The sum of relaxation strengths is linearly related to the content of peroxide bonds which was evaluated by the elementary analysis and DTA. Below the glass temperature, the temperature dependence of dielectric loss of carefully purified polystyrene without peroxide bonds shows very weak peaks which correspond to γ (200°K at 10 kHz) and δ (50°K at 10 kHz) peaks, respectively, in the activation plot. When low molecular degradation products of peroxide bonds are occluded or impurities such as benzaldehyde are added into the specimen, the height of the γ peak is appreciably enhanced, indicating that the reorientation of small polar molecules in polystyrene accompanies the vibration of the phenyl group about the C? C6H5 bond which gives rise to the γ relaxation.  相似文献   

17.
Two‐dimensional time‐domain 1H NMR was used to investigate annealed isotactic polypropylene in the solid phase. The spin–lattice relaxation in the laboratory frame and in the rotating frame were correlated with the shape of the free induction decay to identify and characterize relaxation components over the temperature range −120 to 120 °C. Several phase transitions were observed, and three distinct solid phases, with different chain mobilities, were detected. Two of these phases were identified as regions with different mobilities within the crystalline phase. The third phase was characterized by a high degree of isotropy in molecular motion. This phase, identified as the amorphous phase, appeared as the polymer was heated above a low‐temperature (−45 °C) phase transition. All transitions observed at higher temperatures occurred exclusively in this phase. About one‐third of the polymer chains reside between crystalline lamellae, whereas the majority form amorphous regions outside fibrils of multilamellar structure. Furthermore, the glass‐to‐rubber transition, occurring above −15 °C, consists of three stages. During the first stage, between −15 °C and 15 °C, regions with an increased segment mobility (labeled intermediate phase) appear gradually within the amorphous phase. At 15 °C, the intermediate phase consists of ∼10% of the polymer units, or one‐third of the polymer units constituting the amorphous phase. Between 15 °C and 25 °C, the intermediate phase increases rapidly to 18%. This is associated with the appearance of semiliquid and liquid regions, likely within the intermediate phase. Polymer chain segments (and possibly entire chains) involved in the liquidlike phases exhibit heterogeneous molecular motion with a correlation frequency higher than 106 Hz. These two stages of glass‐to‐rubber transition occur within amorphous regions outside multilamellar structures. The third stage of the glass transition, appearing above 70 °C, is associated with the upper glass transition and occurs within the interlamellar amorphous phase. Finally, on a timescale of 100 ms or less, spin diffusion does not couple the amorphous regions outside fibrils with crystalline and amorphous regions within multilamellar fibrils. However, on a timescale of hundreds of milliseconds to seconds, all different regions within isotactic polypropylene are partially coupled. It is proposed that the relative magnitude of the crystalline magnetization, as observed in the T experiment, is a good measure of polymer crystallinity. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2487–2506, 2000  相似文献   

18.
A novel side‐chain liquid‐crystalline polyimide (SLCPI) was prepared via copolycondensation from 3,5‐diamino‐benzonic‐4′‐biphenyl ester, 4,4′‐diamino‐ biphenyl ether, and 3,3′,4,4′‐oxydiphthalic dianhydride. The energy‐minimized structure and liquid crystallinity of SLCPI were investigated by molecular modeling, differential scanning calorimetry (DSC), wide‐angle X‐ray scattering, and polarized optical microscopy, respectively. The results indicated that this polyimide (PI) with side‐chain mesogenic units exhibited a nematic NI phase. Because of the in situ self‐reinforcement of side‐chain mesogenic units, the improved tensile strength and modulus of PI films reached 270% and 300%, respectively. The coefficient of thermal expansion of films decreased by 40%. DSC and thermogravimetric analyses indicated that the phase‐transition temperature of SLCPI was above 240 °C, and the 5% weight‐loss temperature was above 520 °C. Moreover, copolycondensation of two diamines with dianhydride and incorporation of pendent mesogenic units diminished the regularity and symmetry of main chains; as a result, SLCPI exhibits good film processability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 554–559, 2003  相似文献   

19.
Past differential scanning calorimetry and dielectric relaxation measurements have established that polystyrene (PS)-poly(vinyl methyl ether) (PVME) mixtures exhibit a degree of compatibility when cast from toluene, whereas they are incompatible when cast from chloroform or trichloroethylene. The present study reports that toluene-cast mixtures can be phase-separated by thermal treatment at temperatures exceeding 125°C. This is true for samples containing 20–80 wt-% PS. The temperature of phase separation varies with heating rate; isothermal heating times needed to cause phase separation increase rapidly as the temperature approaches 125°C. Reversibility of the phase separation process depends upon such factors as cooling rate, annealing time, treatment temperature, and thermal history. By annealing and/or slow cooling, all thermally phase-separated mixtures have been brought back to their original state of compatibility. That is, there is no evidence for true irreversiblity of phase separation in thermally treated samples. Quench-cooled samples remain phase-separated indefinitely at room temperature, but this is attributed to rapid cooling below the glass transition of the PS. Chloroform-cast and trichloroethylene-cast mixtures have not been brought to a compatible state by thermal treatment, even after lengthy annealing and slow cooling steps.  相似文献   

20.
Specimens of styrene-butadiene-styrene (SBS) block copolymers, Kraton D-1102, were prepared by solution casting using three different solvents: toluene, cyclohexane, and a mixture of tetrahydrofuran and methyl ethyl ketone (THF/MEK). Measurements of fracture energies of SBS specimens were carried out at various temperatures and rates using two methods (i.e., a conventional tear test and a recently developed cutting test). Effect of casting solvent on the fracture energy was investigated as well. It was found that stick-slip tearing dominates at low temperatures (−50 ∼20°C). Tear strength increased with decreasing temperature. Eventually, a value of 180 kJ/m2 was reached at −70°C, close to the glass transition temperature of polybutadiene phase. At temperatures higher than 20°C, however, steady tearing was found and the tear strength gradually decreased with increasing temperature. Tear strength was virtually zero at 100°C, above the glass transition temperature of polystyrene phase. Effect of temperature on tear strength is more pronounced than that of tearing rate. In contrast, the intrinsic strength of SBS block copolymers determined from cutting test remains unchanged, about 570 J/m2, over a wide range of temperatures and rates. Specimens cast from THF/MEK solution exhibit yielding phenomena when stretched. Moreover, they possess a relatively larger tear strength, compared to those cast from either toluene or cyclohexane solution. A more continuous polystyrene phase is expected to develop in THF/MEK as-cast specimens which is believed to account for the large tear strength. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2003–2015, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号