首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ion traps are versatile tools for the investigation of gas-phase cluster ions, allowing, e.g., cluster-size selection and extended reaction times. Taking advantage of their particular storage capability of simultaneous trapping of electrons and clusters, Penning traps have been applied for the production of clusters with high negative charge states. Recently, linear radio-frequency quadrupole traps have been demonstrated to be another candidate to produce polyanionic clusters. Operation with rectangular, rather than harmonic, radio-frequency voltages provides field-free time slots for unhindered electron passage through the trap. Several aspects of electron-attachment techniques by means of Penning and radio-frequency traps are addressed and recent experimental results are presented.  相似文献   

2.
The LEBIT (Low Energy Beam and Ion Trap) facility is the only Penning trap mass spectrometry (PTMS) facility to utilize rare isotopes produced via fast-beam fragmentation. This technique allows access to practically all elements lighter than uranium, and in particular enables the production of isotopes that are not available or that are difficult to obtain at isotope separation on-line facilities. The preparation of the high-energy rare-isotope beam produced by projectile fragmentation for low-energy PTMS experiments is achieved by gas stopping to slow down and thermalize the fast-beam ions, along with an rf quadrupole cooler and buncher and rf quadrupole ion guides to deliver the beam to the Penning trap. During its first phase of operation LEBIT has been very successful, and new developments are now underway to access rare isotopes even farther from stability, which requires dealing with extremely short lifetimes and low production rates. These developments aim at increasing delivery efficiency, minimizing delivery and measurement time, and maximizing use of available beam time. They include an upgrade to the gas-stopping station, active magnetic field monitoring and stabilization by employing a miniature Penning trap as a magnetometer, the use of stored waveform inverse Fourier transform (SWIFT) to most effectively remove unwanted ions, and charge breeding.  相似文献   

3.
Approximately one million antiprotons have been captured in a large Penning trap at the Low Energy Antiproton Ring at CERN. These antiprotons have subsequently been cooled by electron cooling. This has opened new discussions of the possible use of ultra-low energy antiprotons for nuclear, atomic, and gravitational physics. For most of these experiments, it will be necessary to extract the antiprotons from the trap in a continuous or bunched beam, allowing the timing structure to be used for post-acceleration schemes or as a time tag for the subsequent measurements. We have designed an extraction scheme to accomplish this and have tested portions of it using a smaller Penning trap loaded with protons. First results in generating a time-correlated beam of particles from a Penning trap are presented.  相似文献   

4.
Singly charged gold cluster ions from a laser-vaporization source are transferred into a Penning trap and subjected to electron bombardment. The charged reaction products are analyzed by time-of-flight mass spectrometry after axial ejection from the trap. They include singly charged cluster fragments, multiply charged clusters of the initial size and multiply charged cluster fragments. The multiply charged clusters are selected and further investigated by collision induced dissociation. Two types of reactions can be distinguished: Dissociation into several charged fragments and evaporation of neutrals. Several features of multiply charged clusters relevant for future investigations are reviewed.This work comprises part of the dissertation of J. Ziegler.  相似文献   

5.
Ion traps are wall-less containers which allow the extended storage of selected species. During the storage various interaction steps may be repeatedly applied. To this end no further hardware has to be added - in contrast to beam experiments. In this progress report two examples of recent developments are presented: the experiments have been performed with metal clusters stored in a Penning (ion cyclotron resonance) trap. A new experimental scheme has been developed which allows precision measurements of the dissociation energies of polyatomic species. It has been triggered by investigations on the delayed photodissociation of stored metal clusters. However, the technique is also readily available for application to a broad variety of different species and it is not even restricted to trapping experiments. The second development is more closely connected with ion storage in Penning traps: by application of an electron bath singly charged anionic clusters can be converted into multiply charged species. Subsequently, they are charge selected and investigated with respect to their reaction upon excitation. In particular, preliminary results indicate that dianionic metal clusters emit two electrons upon photoexcitation whereas the singly charged species show dissociation.  相似文献   

6.
彭宁阱是用于直接测量原子核质量的精确设备。为了保证彭宁阱的测量精度,需在阱中心产生精准的四极静电场,而四极静电场是通过对彭宁阱的核心电极施加合适的电压产生的。采用公式推导法和最小二乘法两种方法计算得到了LPT核心电极需加电压幅值。对于公式推导法,电压值完全从理论出发,经公式推导后计算得到;最小二乘法的出发点是使取样偏差的平方和最小,且通过仿真模拟考虑了电极的实际几何形状。由这两种方法得到的非四极项系数C4 和C6,可用于估算因偏离理想四极电场所产生的实验误差。虽然这两种方法的出发点不同,但都可以在阱中心产生需要的四极电场。Penning trap mass spectrometry is one of the direct methods and maybe the most accurate tool for atomic mass measurements. The quadrupole electric eld produced in the trap should be very accurate in order to ensure the precision of measurements. The optimal amplitudes for the key electrodes of the Lanzhou Penning Trap(LPT) have been calculated by two methods|formula derivation and least-squares tting. For formula derivation method, the optimal values are based on the theory and deduced from the formulas. Least-squares tting method is to minimize the quadratic sum of sampling deviations, where the actual geometry of the electrodes has been considered by the simulation. The obtained C4 and C6 values can be used to estimate the experimental error produced by the deviation from the ideal quadrupole electric eld. The expected quadrupole electric led could be gotten by both methods.  相似文献   

7.
We describe a laser-cooling experiment on Mg+ ions confined in an electromagnetic trap (Penning trap or rf trap) and give the preliminary experimental results. In particular, we have observed a laser cooling in the Penning trap configuration in which a measured temperature of about 1 K has been obtained.  相似文献   

8.
A radial inhomogeneous magnetic field produced by counter-propagating currents in anti-Helmholtz configuration coils has been superimposed to a Penning trap. The confinement properties of electrons in such a trap have been studied experimentally. Without the radial B-field we find a number of operating conditions where instabilities occur, arising from higher order contributions to the quadrupolar trapping field. When we apply the radial field the trap properties remain essentially unchanged until the strength of this field at the boundary of the electron cloud is of the same order as the homogeneous Penning field. Then a sudden breakdown in the confinement appears. The experiments have been performed in low magnetic fields. The equations of motions of the trapped particles can be cast in a dimensionless form and our results can be considered as independent of the field strength. Contribution was presented at the TCP06, Vancouver Island, 2006.  相似文献   

9.
When parametrically excited, a harmonic system reveals a nonlinear dynamical behaviour which is common to non-deterministic phenomena. The ion motion in a Penning trap -- which can be regarded as a system of harmonic oscillators -- offers the possibility to study anharmonic characteristics when perturbed by an external periodical driving force. In our experiment we excited an electron cloud stored in a Penning trap by applying an additional quadrupole r.f. field to the endcaps. We observed phenomena such as individual and center-of-mass oscillations of an electron cloud and fractional frequencies, so-called subharmonics, to the axial oscillation. The latter show a characteristic threshold behaviour. This phenomenon can be explained with the existence of a damping mechanism affecting the electron cloud; a minimum value of the excitation amplitude is required to overcome the damping. We could theoretically explain the observed phenomenon by numerically calculating the solutions of the damped differential Mathieu equation. This numerical analysis accounts for the fact that for a weak damping of the harmonic system we observed an even-odd-staggering of the the different orders of the subharmonics in the axial excitation spectrum.Received: 22 September 2003, Published online: 2 December 2003PACS: 52.27.Jt Nonneutral plasmas - 82.80.Qx Ion cyclotron resonance mass spectrometry  相似文献   

10.
Singly charged silver-cluster anions are produced in a laser vaporization source and transferred into a Penning trap. After size selection the clusters are subjected to an electron bath in the trap, which results in the attachment of further electrons. The relative abundance of dianions or trianions as a function of the clusters' size is analyzed by time-of-flight mass spectrometry. Silver-cluster dianions are observed for sizes n≥ 24 and trianions for n > 100. In addition, a detailed study of the cluster sizes 24 ?n? 60 shows a pronounced resistance to electron attachment for singly charged anions Agn - with a closed electronic shell, in particular Ag29 -, Ag33 -, and Ag39 -. Both the threshold size for the observation of dianionic silver clusters and the shell effects in the production yield correlate favorably with previous theoretical investigations of the respective electron affinities. Received 24 November 2000  相似文献   

11.
Slow antihydrogen (H) is produced within a Penning trap that is located within a quadrupole Ioffe trap, the latter intended to ultimately confine extremely cold, ground-state H[over ] atoms. Observed H[over ] atoms in this configuration resolve a debate about whether positrons and antiprotons can be brought together to form atoms within the divergent magnetic fields of a quadrupole Ioffe trap. The number of detected H atoms actually increases when a 400 mK Ioffe trap is turned on.  相似文献   

12.
We have constructed magnetostatic traps from permanent magnets for trapping charged and neutral atoms. Two storage experiments are presented: a compact Penning trap for light ions and magnetic trapping of single neutral atoms. The dynamics of cold neutral atoms and their loss mechanisms in a quadrupole magnetostatic trap are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The low-energy beam and ion trap facility LEBIT at the NSCL at MSU has demonstrated that rare isotopes produced by fast-beam fragmentation can be slowed down and prepared such that precision experiments with low-energy beams are possible. For this purpose high-pressure gas-stopping is employed combined with advanced ion manipulation techniques. Penning trap mass measurements on short-lived rare isotopes have been performed with a 9.4 T Penning trap mass spectrometer. Examples include 66As, which has a half-live of only 96 ms, and the super-allowed Fermi-emitter 38Ca, for which a mass accuracy of 8 ppb (280 eV) has been achieved. The high accuracy of this new mass value makes 38Ca a new candidate for the test of the conserved vector current hypothesis.   相似文献   

14.
TITAN is an on-line facility dedicated to precision experiments with short-lived radioactive isotopes, in particular mass measurements. The achievable resolution on mass measurement, which depends on the excitation time, is limited by the half life of the radioactive ion. One way to bypass this is by increasing the charge state of the ion of interest. TITAN has the unique capability of charge-breeding radioactive ions using an electron-beam ion trap (EBIT) in combination with Penning trap mass spectrometry. However, the breeding process leads to an increase in energy spread, ??E, which in turn negatively influences the mass uncertainty. We report on the development of a cooler Penning trap which aims at reducing the energy spread of the highly charged ions prior to injection into the precision mass measurement trap. Electron and proton cooling will be tested as possible routes. Mass selective cooling techniques are also envisioned.  相似文献   

15.
Gold-cluster dianions $\mathrm{Au}_{n}^{2-}$ , n=21–31, have been investigated by use of multi-collisional excitation in a Penning trap. At low excitation energies the corresponding singly charged cluster anions have been observed, but no fragments, which indicates the emission of one electron. The binding energy of the surplus electron is deduced from the dianion yield observed as a function of the collision energy by use of a statistical model based on detailed balance. The resulting binding energies of the second electrons are in good agreement with a simple liquid-drop model with empirical corrections including the Coulomb barrier. The double difference of these energies shows a strong odd–even staggering which is compared to the behavior of the electron affinity of neutral gold clusters.  相似文献   

16.
The precise determination of the 3He/3H mass ratio, and hence the tritium ??-decay endpoint energy E 0, is of relevance for the measurement of the electron anti-neutrino mass performed by the Karlsruhe Tritium Neutrino experiment (KATRIN). By determining this ratio to an uncertainty of 1 part in 1011, systematic errors of E 0 can be checked in the data analysis of KATRIN. To reach this precision, a Penning Trap Mass Spectrometer was constructed at the University of Washington and has been transferred to the Max Planck Institute for Nuclear Physics in Heidelberg at the end of 2008. Since then it is called MPIK/UW-PTMS. Special design features are the utilization of an external ion source and a double trap configuration. The external Penning ion source efficiently ionizes the helium and tritium gas and can give superior elimination of unwanted ion species compared to the previously utilized in-trap-ionization by electrons from a field-emission point. The design as a double Penning trap allows a faster measurement procedure. This should help to avoid problems resulting from long-term drifts in the experimental conditions. Additionally, the laboratory in Heidelberg was carefully prepared to have very stable environmental conditions. Experimental challenges and the first Heidelberg results with the new spectrometer are presented.  相似文献   

17.
Titanium clusters are produced by laser vaporization of a metal wire in a helium gas pulse, stored in a Penning trap, size selected and transformed into multiply charged anions by electron attachment. Both doubly and triply charged titanium clusters are observed. For the first observation of photodetachment of electrons from metal cluster dianions, Ti 55 2- clusters are selected and excited by a laser pulse, which leads to the emission of an excess electron: Ti 55 2- → e + Ti 55 - . This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The precision of atomic mass measurements in a Penning trap is directly proportional to the charge state q of the ion and, hence, can be increased by using highly charged ions (HCI). For this reason, charge breeding with an electron beam ion trap (EBIT) is employed at TRIUMF’s Ion Trap for Atomic and Nuclear science (TITAN) on-line facility in Vancouver, Canada. By bombarding the injected and trapped singly charged ions with an intense beam of electrons, the charge state of the ions is rapidly increased inside the EBIT. To be compatible with the on-line requirements of short-lived isotopes, very high electron beam current densities are needed. The TITAN EBIT includes a 6 Tesla superconducting magnet and is designed to have electron beam currents and energies of up to 5 A and 60 keV, respectively. Once operational at full capacity, most species can be bred into a He-like configuration within tens of ms. Subsequently, the HCI are extracted, pass a Wien filter to reduce isobaric contamination, are cooled, and injected into a precision Penning trap for mass measurement. We will present the first results and current status of the TITAN EBIT, which has recently been moved to TRIUMF after assembly and commissioning at the Max-Planck-Institute (MPI) for Nuclear Physics in Heidelberg, Germany.  相似文献   

19.
Antiprotons (p[over]) remain confined in a Penning trap, in sufficient numbers to form antihydrogen (H[over ) atoms via charge exchange, when the radial field of a quadrupole Ioffe trap is added. This first demonstration with p[over] suggests that quadrupole Ioffe traps can be superimposed upon p[over] and e(+) traps to attempt the capture of H[over] atoms as they form, contrary to conclusions of previous analyses.  相似文献   

20.
Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号