首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Methyl, methyl-d(3), and ethyl hydroperoxide anions (CH(3)OO(-), CD(3)OO(-), and CH(3)CH(2)OO(-)) have been prepared by deprotonation of their respective hydroperoxides in a stream of helium buffer gas. Photodetachment with 364 nm (3.408 eV) radiation was used to measure the adiabatic electron affinities: EA[CH(3)OO, X(2)A' '] = 1.161 +/- 0.005 eV, EA[CD(3)OO, X(2)A' '] = 1.154 +/- 0.004 eV, and EA[CH(3)CH(2)OO, X(2)A' '] = 1.186 +/- 0.004 eV. The photoelectron spectra yield values for the term energies: Delta E(X(2)A' '-A (2)A')[CH(3)OO] = 0.914 +/- 0.005 eV, Delta E(X(2)A' '-A (2)A')[CD(3)OO] = 0.913 +/- 0.004 eV, and Delta E(X(2)A' '-A (2)A')[CH(3)CH(2)OO] = 0.938 +/- 0.004 eV. A localized RO-O stretching mode was observed near 1100 cm(-1) for the ground state of all three radicals, and low-frequency R-O-O bending modes are also reported. Proton-transfer kinetics of the hydroperoxides have been measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to determine the gas-phase acidity of the parent hydroperoxides: Delta(acid)G(298)(CH(3)OOH) = 367.6 +/- 0.7 kcal mol(-1), Delta(acid)G(298)(CD(3)OOH) = 367.9 +/- 0.9 kcal mol(-1), and Delta(acid)G(298)(CH(3)CH(2)OOH) = 363.9 +/- 2.0 kcal mol(-1). From these acidities we have derived the enthalpies of deprotonation: Delta(acid)H(298)(CH(3)OOH) = 374.6 +/- 1.0 kcal mol(-1), Delta(acid)H(298)(CD(3)OOH) = 374.9 +/- 1.1 kcal mol(-1), and Delta(acid)H(298)(CH(3)CH(2)OOH) = 371.0 +/- 2.2 kcal mol(-1). Use of the negative-ion acidity/EA cycle provides the ROO-H bond enthalpies: DH(298)(CH(3)OO-H) = 87.8 +/- 1.0 kcal mol(-1), DH(298)(CD(3)OO-H) = 87.9 +/- 1.1 kcal mol(-1), and DH(298)(CH(3)CH(2)OO-H) = 84.8 +/- 2.2 kcal mol(-1). We review the thermochemistry of the peroxyl radicals, CH(3)OO and CH(3)CH(2)OO. Using experimental bond enthalpies, DH(298)(ROO-H), and CBS/APNO ab initio electronic structure calculations for the energies of the corresponding hydroperoxides, we derive the heats of formation of the peroxyl radicals. The "electron affinity/acidity/CBS" cycle yields Delta(f)H(298)[CH(3)OO] = 4.8 +/- 1.2 kcal mol(-1) and Delta(f)H(298)[CH(3)CH(2)OO] = -6.8 +/- 2.3 kcal mol(-1).  相似文献   

2.
Dimethyl ether is under consideration as an alternative diesel fuel. Its combustion chemistry is as yet ill-characterized. Here we use Born-Oppenheimer molecular dynamics (BOMD) based on DFT-B3LYP forces to investigate the short-time dynamics of selected features of the low-temperature dimethyl ether (DME) oxidation potential energy surface. Along the chain propagation pathway, we run BOMD simulations from the transition state involving the decomposition of (*)CH(2)OCH(2)OOH to two CH(2)=O and an (*)OH radical. We predict that formaldehyde C-O stretch overtones are excited, consistent with laser photolysis experiments. We also predict that O-H overtones are excited for the (*)OH formed from (*)CH(2)OCH(2)OOH dissociation. We also investigate short-time dynamics involved in chain branching. First, we examine the isomerization transition state of (*)OOCH(2)OCH(2)OOH --> HOOCH(2)OCHOOH. The latter species is predicted to be a short-lived metastable radical that decomposes within 500 fs to hydroperoxymethyl formate (HPMF; HOOCH(2)OC(=O)H) and the first (*)OH of chain branching. The dissociation of HOOCH(2)OCHOOH exhibits non-RRKM behavior in its lifetime profile, which may be due to conformational constraints or slow intramolecular vibrational energy transfer (IVR) from the nascent H-O bond to the opposite end of the radical, where O-O scission occurs to form HPMF and (*)OH. In a few trajectories, we see HOOCH(2)OCHOOH recross back to (*)OOCH(2)OCH(2)OOH because the isomerization is endothermic, with only an 8 kcal/mol barrier to recrossing. Therefore, some inhibition of chain-branching may be due to recrossing. Second, trajectories run from the transition state leading to the direct decomposition of HPMF (an important source of the second (*)OH radical in chain branching) to HCO, (*)OH, and HC(=O)OH show that these products can recombine to form many other possible products. These products include CH(2)OO + HC(=O)OH, H(2)O + CO + HC(=O)OH, HC(=O)OH + HC(=O)OH, and HC(=O)C(=O)H + H(2)O, which (save CH(2)OO + HC(=O)OH) are all more thermodynamically stable than the original HCO + (*)OH + HC(=O)OH products. Moreover, the multitude of extra products suggest that standard statistical rate theories cannot completely describe the reaction kinetics of significantly oxygenated compounds such as HPMF. These secondary products consume the second (*)OH required for explosive combustion, suggesting an inhibition of DME fuel combustion is likely.  相似文献   

3.
Various copper(I) and copper(II) derivatives, both "simple" ones (copper acetate, perchlorate and a complex with CH3CN) and compounds containing N,O-chelating ligands, catalyse very efficient (turnover numbers attain 2200) oxidation of saturated hydrocarbons with peroxyacetic acid (PAA) or tert-butyl hydroperoxide (TBHP) in acetonitrile solution at 60 degrees C. Alkyl hydroperoxide, alcohol and ketone are formed, the main product being an alkyl hydroperoxide in the oxidation with PAA and an alcohol for the case of TBHP. It has been proposed that the oxidation with PAA is induced via the attack of species r* [HO* or CH3C(=O)O*] on the alkane, RH. A competitive attack of r* on the solvent, CH3CN, also occurs. It has been assumed that in the case of the reaction catalysed by complex Cu(CH3CN)4BF4, copper is present mainly in the form of Cu+ cation, and the rate-limiting step of the oxidation process is the formation of r* via reaction (1): CH3C(=O)OOH + Cu+ --> CH3C(=O)O* + HO- + Cu2+ or/and CH3C(=O)OOH + Cu+ --> CH3C(=O)O- + HO* + Cu2+ with initial rate W1 = k1[PAA][Cu(CH3CN)4BF4] and k1 = 1.7 mol(-1) dm3 s(-1) at 60 degrees C. The activity of the Cu-catalyst is dramatically changed on a small modification of N,O-chelating ligands in the catalyst.  相似文献   

4.
乙烷/H2O/O2/N2体系中光致过氧化物的产生   总被引:1,自引:0,他引:1  
采用长光路Fourier红外光谱(LP-FTIR)和高压液相色谱(HPLC)技术研究了乙烷/H2O/O2/N2光化学体系中过氧化物的产生,证实乙烷降解产物中有过氧化氢、乙基过氧化氢(CH3CH2OOH,EHP)和过氧乙酸[CH3C(O)OOH,PAA],并首次发现了甲基过氧化氢(CH3OOH,MHP)、羟甲基过氧化氢(HOCH2OOH,HMHP)和过氧甲醚(CH3OOCH3,DMP).H2O2,MHP和EHP的最大计算产率分别为6.8%,6.4%和6.7%,是乙烷降解生成的主要过氧化产物。MHP主要来自乙烷降解过程中的中间物乙醛的光解。HMHP的检出表明乙烷降解过程中可能有Criegee中间体.CH2OO.产生。OH自由基引发的乙烷降解反应可能是对流层大气H2O2,MHP及EHP的重要来源之一。  相似文献   

5.
This work determines the dissociation barrier height for CH2CHCO --> CH2CH + CO using two-dimensional product velocity map imaging. The CH2CHCO radical is prepared under collision-free conditions from C-Cl bond fission in the photodissociation of acryloyl chloride at 235 nm. The nascent CH2CHCO radicals that do not dissociate to CH2CH + CO, about 73% of all the radicals produced, are detected using 157-nm photoionization. The Cl(2P(3/2)) and Cl(2P(1/2)) atomic fragments, momentum matched to both the stable and unstable radicals, are detected state selectively by resonance-enhanced multiphoton ionization at 235 nm. By comparing the total translational energy release distribution P(E(T)) derived from the measured recoil velocities of the Cl atoms with that derived from the momentum-matched radical cophotofragments which do not dissociate, the energy threshold at which the CH2CHCO radicals begin to dissociate is determined. Based on this energy threshold and conservation of energy, and using calculated C-Cl bond energies for the precursor to produce CH2CHC*O or C*H2CHCO, respectively, we have determined the forward dissociation barriers for the radical to dissociate to vinyl + CO. The experimentally determined barrier for CH2CHC*O --> CH2CH + CO is 21+/-2 kcal mol(-1), and the computed energy difference between the CH2CHC*O and the C*H2CHCO forms of the radical gives the corresponding barrier for C*H2CHCO --> CH2CH + CO to be 23+/-2 kcal mol(-1). This experimental determination is compared with predictions from electronic structure methods, including coupled-cluster, density-functional, and composite Gaussian-3-based methods. The comparison shows that density-functional theory predicts too low an energy for the C*H2CHCO radical, and thus too high a barrier energy, whereas both the Gaussian-3 and the coupled-cluster methods yield predictions in good agreement with experiment. The experiment also shows that acryloyl chloride can be used as a photolytic precursor at 235 nm of thermodynamically stable CH2CHC*O radicals, most with an internal energy distribution ranging from approximately 3 to approximately 21 kcal mol(-1). We discuss the results with respect to the prior work on the O(3P) + propargyl reaction and the analogous O(3P) + allyl system.  相似文献   

6.
Criegee中间体气相反应热力学的G2理论计算   总被引:1,自引:0,他引:1  
Criegee intermediate is believed to play an important role in the atmospheric chemistry. Because of its short life and the difficulty in experimental study, we carried out ah initio calculations on the thermochemistry of the Criegee involving reactions in this study. Thermochemistry data of reaction enthalpies and Gibbs free energies for four different stable structures of the Criegee intermediates (singlet CH2OO ①1 A1 in C2v, triplet CH2OO ②3B1 in C2v, singlet CH2OO ③1A' in Cs and triplet CH2OO ④ in C1 symmetry) involved in some of the gas-phase reactions were calculated at the standard Gaussian-2 [G2(MP2) and G2] and a modified G2, G2(fu1)[10],levels of theory. Relative energies among those Criegees and formic acid were compared. Chemical reactions include the formation of Criegees, re-arrangement from Criegee to formic acid, dissociations (producing CH2(3B1)+O2, CH2(1A1)+O2, CO2+H2, CO2+2H, CO+H2O, OH+HCO) and the reactions between Criegee and NO/H2O. Standard equilibrium constants for some reactions were investigated and may be obtained for all of the rest reactions involved in this study by the standard Gibbs free energies. It is shown that the formation of Criegee ①-④ by ethylene and ozone, the re-arrangement from any Criegee to formic acid, the dissociation in producing CO2+O2and CO+H2O and the reactions between any Criegee and NO/H2O are all favourable thermodynamicaly. The dissociation in forming CO2+2H and OH+HCO is less favourable. While the dissociation in forming carbene (either in 3B1 or 1A1 state) is not allowed by ΔrGm? values. Standard enthalpies of formation at 298 K for the four Criegees were predicted at the G2(ful) level of theory. Each value is the average value from ten of the above reactions and they are -4.3, 74.8,98.9 and 244.6 kJ mol-1 at the G2(ful) level for Criegee ① to Criegee ④, respectively. In addition, tile standard enthalpy of formation at 298 K for HOCH2OOH is further predicted to be -315.6 kJ mol-1 at the G2(MP2) level.  相似文献   

7.
HPLC along with FT-IR technique was used to study the formation of organic peroxides in the CI2-ethane-air photoreaction system. Ethyl hydroperoxide (CH3CH2OOH, EHP) and per-oxyacetic acid ( CH3C(O)OOH, PAA) were conformed to be the peroxide product in the reaction system. In addition, methyl hydroperoxide (CH3OOH, MHP), hydroxymethyl hydroperoxide (HOCH2OOH, HMHP) and two unidentified organic peroxides were detected for the first time. EHP and MHP were the dominant peroxide products. The identification of HMHP showed that Criegee biradical CH2OO may be formed as an intermediate in the oxidation of ethane. Simulation results showed that photooxidation of ethane may make substantial contribution to source of organic peroxides in the atmosphere.  相似文献   

8.
The CH3S* + O2 reaction system is considered an important process in atmospheric chemistry and in combustion as a pathway for the exothermic conversion of methane-thiyl radical, CH3S*. Several density functional and ab initio computational methods are used in this study to determine thermochemical parameters, reaction paths, and kinetic barriers in the CH3S* + O2 reaction system. The data are also used to evaluate feasibility of the DFT methods for higher molecular weight oxy-sulfur hydrocarbons, where sulfur presents added complexity from its many valence states. The methods include: B3LYP/6-311++G(d,p), B3LYP/6-311++G(3df,2p), CCSD(T)/6-311G(d,p)//MP2/6-31G(d,p), B3P86/6-311G(2d,2p)//B3P86/6-31G(d), B3PW91/6-311++G(3df,2p), G3MP2, and CBS-QB3. The well depth for the CH3S* + 3O2 reaction to the syn-CH3SOO* adduct is found to be 9.7 kcal/mol. Low barrier exit channels from the syn-CH3SOO* adduct include: CH2S + HO2, (TS6, E(a) is 12.5 kcal/mol), CH3 + SO2 via CH3SO2 (TS2', E(a) is 17.8) and CH3SO + O (TS17, E(a) is 24.7) where the activation energy is relative to the syn-CH3SOO* stabilized adduct. The transition state (TS5) for formation of the CH3SOO adduct from CH3S* + O2 and the reverse dissociation of CH3SOO to CH3S* + O2 is relatively tight compared to typical association and simple bond dissociation reactions; this is a result of the very weak interaction. Reverse reaction is the dominant dissociation path due to enthalpy and entropy considerations. The rate constants from the chemical activation reaction and from the stabilized adduct to these products are estimated as functions of temperature and pressure. Our forward rate constant and CH3S loss profile are in agreement with the experiments under similar conditions. Of the methods above, the G3MP2 and CBS-QB3 composite methods are recommended for thermochemical determinations on these carbon-sulfur-oxygen systems, when they are feasible.  相似文献   

9.
Model systems, based on aqueous solutions containing isoflurane (CHF(2)OCHClCF(3)) as an example, have been studied in the presence and absence of methionine (MetS) to evaluate reactive fates of halogenated hydroperoxides and peroxyl and alkoxyl radicals. Primary peroxyl radicals, CHF(2)OCH(OO*)CF(3), generated upon 1-e-reduction of isoflurane react quantitatively with MetS via an overall two-electron oxidation mechanism to the corresponding sulfoxide (MetSO). This reaction is accompanied by the formation of oxyl radicals CHF(2)OCH(O*)CF(3) that quantitatively rearrange by a 1,2-hydrogen shift to CHF(2)OC*(OH)CF(3). According to quantum-chemical calculations, this reaction is exothermic (DeltaH = -5.1 kcal/mol) in contrast to other potentially possible pathways. These rearranged CHF(2)OC*(OH)CF(3) radicals react further via either of two pathways: (i) direct addition of oxygen or (ii) deprotonation followed by fluoride elimination resulting in CHF(2)OC(O)CF(2)*. Route i yields the corresponding CHF(2)OC(OO*)(OH)CF(3) peroxyl radicals, which eliminate H+/O(2)*-. The resulting ester, CHF(2)OC(O)CF(3), hydrolyzes further, accounting for the formation of HF, trifluoroacetic acid, and formic acid with a contribution of 45% and 80% in air- and oxygen-saturated solutions, respectively. A competitive pathway (ii) involves the reactions of the secondary peroxyl radicals, CHF(2)OC(O)CF(2)OO*. The two more stable of the three above mentioned peroxyl radicals can be distinguished through their reaction with MetS. Although the primary CHF(2)OCH(OO*)CF(3) oxidizes MetS to MetSO in a 2-e step, the majority of the secondarily formed CHF(2)OC(O)CF(2)OO* reacts with MetS via a 1-e transfer mechanism, yielding CHF(2)OC(O)CF(2)OO-, which eventually suffers a total breakup into CHF(2)O- + CO(2) + CF(2)O. Quantum-chemical calculations show that this reaction is highly exothermic (DeltaH = -81 kcal/mol). In air-saturated solution this pathway accounts for about 35% of the overall isoflurane degradation. Minor products (10% each), namely, oxalic acid and carbon monoxide originate from oxyl radicals, CHF(2)OC(O)CF(2)O* and CHF(2)OCH(O*)CF(3). An isoflurane-derived hydroperoxide CHF(2)OCH(OOH)CF(3) in high yield was generated in radiolysis of air-saturated solutions containing isoflurane and formate either via a H-atom abstraction from formate by the isoflurane-derived peroxyl radicals or by their cross-termination reaction with superoxide O(2)*-. CHF(2)OCH(OOH)CF(3), is an unstable intermediate whose multistep hydrolysis is giving H(2)O(2) + 2HF + HC(O)OH + CF(3)CH(OH)(2). In the absence of MetS, about 55% of CHF(2)OCH(OO*)CF(3) undergo termination via the Russell mechanism and 27% are involved in cross-termination with superoxide (O(2)*-) and peroxyl radicals derived from t-BuOH (used to scavenge *OH radicals). The remaining 18% of the primary peroxyl radicals undergo termination via formation of alkoxyl radicals, CHF(2)OCH(O*)CF(3).  相似文献   

10.
Arrhenius rate expressions were determined for beta-scission of phenoxyl radical from 1-phenyl-2-phenoxyethanol-1-yl, PhC*(OH)CH2OPh (V). Ketyl radical V was competitively trapped by thiophenol to yield PhCH(OH)CH2OPh in competition with beta-scission to yield phenoxyl radical and acetophenone. A basis rate expression for hydrogen atom abstraction by sec-phenethyl alcohol, PhC*(OH)CH3, from thiophenol, log(k(abs)/M(-1) s(-1)) = (8.88 +/- 0.24) - (6.07 +/- 0.34)/theta, theta = 2.303RT, was determined by competing hydrogen atom abstraction with radical self-termination. Self-termination rates for PhC*(OH)CH3 were calculated using the Smoluchowski equation employing experimental diffusion coefficients of the parent alcohol, PhCH(OH)CH3, as a model for the radical. The hydrogen abstraction basis reaction was employed to determine the activation barrier for the beta-scission of phenoxyl from 1-phenyl-2-phenoxyethanol-1-yl (V): log(k beta)/s(-1)) = (12.85 +/- 0.22) - (15.06 +/- 0.38)/theta, k beta (298 K) ca. (64.0 s(-1) in benzene), and log(k beta /s(-1)) = (12.50 +/- 0.18) - (14.46 +/- 0.30)/theta, k beta (298 K) = 78.7 s(-1) in benzene containing 0.8 M 2-propanol. B3LYP/cc-PVTZ electronic structure calculations predict that intramolecular hydrogen bonding between the alpha-OH and the -OPh leaving group of ketyl radical (V) stabilizes both ground- and transition-state structures. The computed activation barrier, 14.9 kcal/mol, is in good agreement with the experimental activation barrier.  相似文献   

11.
Unimolecular dissociation of a neopentyl radical to isobutene and methyl radical is competitive with the neopentyl association with O2 ((3)Sigma(g)-) in thermal oxidative systems. Furthermore, both isobutene and the OH radical are important primary products from the reactions of neopentyl with O2. Consequently, the reactions of O2 with the 2-hydroxy-1,1-dimethylethyl and 2-hydroxy-2-methylpropyl radicals resulting from the OH addition to isobutene are important to understanding the oxidation of neopentane and other branched hydrocarbons. Reactions that correspond to the association of radical adducts with O2((3)Sigma(g)-) involve chemically activated peroxy intermediates, which can isomerize and react to form one of several products before stabilization. The above reaction systems were analyzed with ab initio and density functional calculations to evaluate the thermochemistry, reaction paths, and kinetics that are important in neopentyl radical oxidation. The stationary points of potential energy surfaces were analyzed based on the enthalpies calculated at the CBS-Q level. The entropies, S(degrees)298, and heat capacities, C(p)(T), (0 相似文献   

12.
Helium nanodroplet isolation and infrared laser spectroscopy are used to investigate the CH(3) + O(2) reaction. Helium nanodroplets are doped with methyl radicals that are generated in an effusive pyrolysis source. Downstream from the introduction of CH(3), the droplets are doped with O(2) from a gas pick-up cell. The CH(3) + O(2) reaction therefore occurs between sequentially picked-up and presumably cold CH(3) and O(2) reactants. The reaction is known to lead barrierlessly to the methyl peroxy radical, CH(3)OO. The ~30 kcal/mol bond energy is dissipated by helium atom evaporation, and the infrared spectrum in the CH stretch region reveals a large abundance of droplets containing the cold, helium solvated CH(3)OO radical. The CH(3)OO infrared spectrum is assigned on the basis of comparisons to high-level ab initio calculations and to the gas phase band origins and rotational constants.  相似文献   

13.
A direct dynamics simulation at the B3LYP/6-311+G(d,p) level of theory was used to study the F- + CH3OOH reaction dynamics. The simulations are in excellent agreement with a previous experimental study (J. Am. Chem. Soc. 2002, 124, 3196). Two product channels, HF + CH2O + OH- and HF + CH3OO-, are observed. The former dominates and occurs via an ECO2 mechanism in which F- attacks the CH3- group, abstracting a proton. Concertedly, a carbon-oxygen double bond is formed and OH- is eliminated. Somewhat surprisingly this is not the reaction path, predicted by the intrinsic reaction coordinate (IRC), which leads to a deep potential energy minimum for the CH2(OH)2...F- complex followed by dissociation to HF + CH2(OH)O-. None of the direct dynamics trajectories followed this path, which has an energy release of -63 kcal/mol and is considerably more exothermic than the ECO2 path whose energy release is -27 kcal/mol. Other product channels not observed, and which have a lower energy than that for the ECO2 path, are F- + CO + H2 + H2O (-43 kcal/mol), F- + CH2O + H2O (-51 kcal/mol), and F- + CH2(OH)2 (-60 kcal/mol). Formation of the CH3OOH...F- complex, with randomization of its internal energy, is important, and this complex dissociates via the ECO2 mechanism. Trajectories which form HF + CH3OO- are nonstatistical events and, for the 4 ps direct dynamics simulation, are not mediated by the CH3OOH...F- complex. Dissociation of this complex to form HF + CH3OO- may occur on longer time scales.  相似文献   

14.
HPLC along with FT-IR technique was used to study the formation of organic peroxides in the Cl2-ethane-air photoreaction system. Ethyl hydroperoxide (CH3CH21OOH, EHP) and peroxyacetic acid ( CH3C(O)OOH, PAA) were conformed to be the peroxide product in the reaction system. In addition, methyl hydroperoxide (CH3OOH, hydroxymethyl hydroperoxide (HOCH2OOH, HMHP) and two unidentified organic peroxides were detected for the first time. EHP and were the dominant peroxide products. The identification of HMHP showed that Criegee biradical CH2OO may be formed as an intermediate in the oxidation of ethane. Simulation results showed that photooxidation of ethane may make substantial contribution to source of organic peroxides in the atmosphere.  相似文献   

15.
Thermochemical parameters of three C(2)H(5)O* radicals derived from ethanol were reevaluated using coupled-cluster theory CCSD(T) calculations, with the aug-cc-pVnZ (n = D, T, Q) basis sets, that allow the CC energies to be extrapolated at the CBS limit. Theoretical results obtained for methanol and two CH(3)O* radicals were found to agree within +/-0.5 kcal/mol with the experiment values. A set of consistent values was determined for ethanol and its radicals: (a) heats of formation (298 K) DeltaHf(C(2)H(5)OH) = -56.4 +/- 0.8 kcal/mol (exptl: -56.21 +/- 0.12 kcal/mol), DeltaHf(CH(3)C*HOH) = -13.1 +/- 0.8 kcal/mol, DeltaHf(C*H(2)CH(2)OH) = -6.2 +/- 0.8 kcal/mol, and DeltaHf(CH(3)CH(2)O*) = -2.7 +/- 0.8 kcal/mol; (b) bond dissociation energies (BDEs) of ethanol (0 K) BDE(CH(3)CHOH-H) = 93.9 +/- 0.8 kcal/mol, BDE(CH(2)CH(2)OH-H) = 100.6 +/- 0.8 kcal/mol, and BDE(CH(3)CH(2)O-H) = 104.5 +/- 0.8 kcal/mol. The present results support the experimental ionization energies and electron affinities of the radicals, and appearance energy of (CH(3)CHOH+) cation. Beta-C-C bond scission in the ethoxy radical, CH(3)CH2O*, leading to the formation of C*H3 and CH(2)=O, is characterized by a C-C bond energy of 9.6 kcal/mol at 0 K, a zero-point-corrected energy barrier of E0++ = 17.2 kcal/mol, an activation energy of Ea = 18.0 kcal/mol and a high-pressure thermal rate coefficient of k(infinity)(298 K) = 3.9 s(-1), including a tunneling correction. The latter value is in excellent agreement with the value of 5.2 s(-1) from the most recent experimental kinetic data. Using RRKM theory, we obtain a general rate expression of k(T,p) = 1.26 x 10(9)p(0.793) exp(-15.5/RT) s(-1) in the temperature range (T) from 198 to 1998 K and pressure range (p) from 0.1 to 8360.1 Torr with N2 as the collision partners, where k(298 K, 760 Torr) = 2.7 s(-1), without tunneling and k = 3.2 s(-1) with the tunneling correction. Evidence is provided that heavy atom tunneling can play a role in the rate constant for beta-C-C bond scission in alkoxy radicals.  相似文献   

16.
Several reaction pathways on the potential energy surface (PES) for the reaction of CH3O2 radicals with Br atoms are examined using both ab initio and density functional methods. Analysis of the PES suggests the presence of the stable intermediates CH3OOBr and CH3OBrO. CH3OOBr is calculated to be more stable than CH3OBrO by 9.7 kcal mol(-1) with a significant barrier preventing formation of CH3OBrO via isomerization of CH3OOBr. The relative importance of bi- and termolecular product channels resulting from the initially formed CH3OOBr adduct are assessed based on calculated barriers to the formation of CH2OO + HBr, CH3O + BrO, CH3Br + O2, and CH2O + HOBr.  相似文献   

17.
The cuprous dialkyldithiophosphate [(RO)2PS2Cu, CuDDP] as an antioxidant has been industrially used in lubricating oil. In this paper, for the first time, a computational study has been carried out for CuDDP. The scaled hypersphere search method has been used to explore the isomerization and decomposition pathways of (HO)2PS2Cu, a model compound of CuDDP, and its reaction with CH3OO* radical. The calculations were performed at the B3LYP level of theory. The results show that the most stable structure of (HO)2PS2Cu has pseudo-C2v symmetry and a four-membered ring constructed by P, Cu, and two S atoms. The bond-rearrangement isomerization leading to a (H)O-bridging structure is kinetically feasible. Three dissociation channels have been found for (HO)2PS2Cu, which require high energy (>60 kcal/mol) under the investigated condition. The reaction of (HO)2PS2Cu with CH3OO* includes bond-rearrangement isomerization and the decomposition of CH3OO* moiety. The (HO)2PS2Cu-assisted CH3OO* decomposition occurs via its O-O bond cleavage or the C-O bond dissociation. The former decomposition manner has been computed to be preferable over the latter at low temperature, but calculations suggested for the latter decomposition manner at higher temperature. Such a decomposition reaction, which is endothermic but possible, may be related to the antioxidation process of CuDDP.  相似文献   

18.
In spite of the potential importance of the HCS radical in both combustion and interstellar processes, its chemical reactivity has not been tackled previously. In the present paper, the oxidation reaction of the HCS radical is theoretically investigated for the first time at the CCSD(T)/6-311++G(3df,2p)//BH&HLYP/6-311++G(d,p)+ZPVE and Gaussian-3//B3LYP/6-31G(d) levels. It is shown that the most feasible pathway is the O2 addition to the HCS radical forming the intermediate SC(H)OO which can undergo a subsequent O-extrusion leading to SC(H)O + 3O. This features an indirect O-transfer mechanism with the overall barrier of 4.4 and 3.5 kcal mol(-1), respectively, at the two levels. However, formation of the H-transfer product CS + HO2 is kinetically much less feasible, i.e., the direct mechanism has barriers of 14.3 and 8.7 kcal mol(-1), whereas the indirect mechanism has barriers of 12.6 and 10.7 kcal mol(-1), respectively. This result is in sharp contrast to the analogous HCO + O2 reaction, where the direct (with a barrier of 2.98 kcal mol(-1)) and indirect (2.26 kcal mol(-1)) H-transfer processes are highly competitive over the indirect O-transfer process (the least endothermicity is 19.9 kcal mol(-1)). The possible explanations and implications of the present results are provided.  相似文献   

19.
Criegee biradicals, i.e., carbonyl oxides, are critical intermediates in ozonolysis and have been implicated in autoignition chemistry and other hydrocarbon oxidation systems, but until recently the direct measurement of their gas-phase kinetics has not been feasible. Indirect determinations of Criegee intermediate kinetics often rely on the introduction of a scavenger molecule into an ozonolysis system and analysis of the effects of the scavenger on yields of products associated with Criegee intermediate reactions. Carbonyl species, in particular hexafluoroacetone (CF(3)COCF(3)), have often been used as scavengers. In this work, the reactions of the simplest Criegee intermediate, CH(2)OO (formaldehyde oxide), with three carbonyl species have been measured by laser photolysis/tunable synchrotron photoionization mass spectrometry. Diiodomethane photolysis produces CH(2)I radicals, which react with O(2) to yield CH(2)OO + I. The formaldehyde oxide is reacted with a large excess of a carbonyl reactant and both the disappearance of CH(2)OO and the formation of reaction products are monitored. The rate coefficient for CH(2)OO + hexafluoroacetone is k(1) = (3.0 ± 0.3) × 10(-11) cm(3) molecule(-1) s(-1), supporting the use of hexafluoroacetone as a Criegee-intermediate scavenger. The reactions with acetaldehyde, k(2) = (9.5 ± 0.7) × 10(-13) cm(3) molecule(-1) s(-1), and with acetone, k(3) = (2.3 ± 0.3) × 10(-13) cm(3) molecule(-1) s(-1), are substantially slower. Secondary ozonides and products of ozonide isomerization are observed from the reactions of CH(2)OO with acetone and hexafluoroacetone. Their photoionization spectra are interpreted with the aid of quantum-chemical and Franck-Condon-factor calculations. No secondary ozonide was observable in the reaction of CH(2)OO with acetaldehyde, but acetic acid was identified as a product under the conditions used (4 Torr and 293 K).  相似文献   

20.
2-pyridinethione (2-mercaptopyridine, H-2mp) undergoes rapid oxidative addition with 2 mol of the 17-electron organometallic radical *Cr(CO)3Cp (where Cp*=C5Me5), yielding hydride H-Cr(CO)3Cp* and thiolate (eta1-2mp)Cr(CO)3Cp*. In a slower secondary reaction, (eta1-2mp)Cr(CO)3Cp* loses CO generating the N,S-chelate complex (eta2-2mp)Cr(CO)2Cp* for which the crystal structure is reported. The rate of 2-pyridine thione oxidative addition with *Cr(CO)3Cp* (abbreviated *Cr) in toluene best fits rate=kobs[H-2mp][*Cr]; kobs(288 K)=22 +/- 4 M(-1) s(-1); DeltaH++=4 +/- 1 kcal/mol; DeltaS++=- 40 +/- 5 cal/mol K. The rate of reaction is the same under CO or Ar, and the reaction of deuterated 2-pyridine thione (D-2mp) shows a negligible (inverse) kinetic isotope effect (kD/kH=1.06 +/- 0.10). The rate of decarbonylation of (eta1-2mp)Cr(CO)3Cp* forming (eta2-2mp)Cr(CO)2Cp* obeys simple first-order kinetics with kobs (288 K)=3.1x10(-4) s(-1), DeltaH++=23 +/- 1 kcal/mol, and DeltaS++=+ 5.0 +/- 2 cal/mol K. Reaction of 4-pyridine thione (4-mercaptopyridine, H-4mp) with *Cr(CO)3Cp* in THF and CH2Cl2 also follows second-order kinetics and is approximately 2-5 times faster than H-2mp in the same solvents. The relatively rapid nature of the thione versus thiol reactions is attributed to differences in the proposed 19-electron intermediate complexes, [*(S=C5H4N-H)Cr(CO)3Cp*] versus [*(H-S-C6H5)Cr(CO)3Cp*]. In comparison, reactions of pyridyl disulfides occur by a mechanism similar to that followed by aryl disulfides involving direct attack of the sulfur-sulfur bond by the metal radical. Calorimetric data indicate Cr-SR bond strengths for aryl and pyridyl derivatives are similar. The experimental conclusions are supported by B3LYP/6-311+G(3df,2p) calculations, which also provide additional insight into the reaction pathways open to the thione/thiol tautomers. For example, the reaction between H* radical and the 2-pyridine thione S atom yielding a thionyl radical is exothermic by approximately 30 kcal/mol. In contrast, the thiuranyl radical formed from the addition of H* to the 2-pyridine thiol S atom is predicted to be unstable, eliminating either H* or HS* without barrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号