首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The hydrodynamic characteristics of a rectangular gas-driven inverse liquid-solid fluidized bed (GDFB) using particles of different diameters and densities were investigated in detail. Rising gas bubbles cause a liquid upflow in the riser portion, enabling a liquid downflow that causes an inverse fluidization in the downer portion. Four flow regimes (fixed bed regime, initial fluidization regime, complete fluidization regime, and circulating fluidization regime) and three transition gas velocities (initial fluidization gas velocity, minimum fluidization gas velocity, and circulating fluidization gas velocity) were identified via visual observation and by monitoring the variations in the pressure drop. The axial local bed voidage (ε) of the downer first decreases and then increases with the increase of the gas velocity. Both the liquid circulation velocity and the average particle velocity inside the downer increase with the increase of the gas velocity in the riser, but decrease with the particle loading. An empirical formula was proposed to successfully predict the Richardson-Zaki index “n”, and the predicted ε obtained from this formula has a ±5% relative error when compared with the experimental ε.  相似文献   

2.
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction. The bubble behaviors under elevated pressure, strongly influencing the fluidization and reaction conversion of the whole system, are of great research significance. In this work, the bubble behaviors of Geldart B particle in a pseudo two-dimensional (2D) pressurized fluidized bed were experimentally studied based on digital image analysis technique. The effects of pressure and fluidization gas velocity on the general bubble behaviors (i.e., size, shape and spatial distribution) and the dynamic characteristics, such as the time-evolution of voidage distribution and local flow regimes, were comprehensively investigated. Results show that increasing pressure reduces the stability of bubbles and facilitates gas passing through the emulsion phase, resulting in the “smoother” fluidization state with smaller bubbles and declined bubble fraction and standard deviation. The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises. The elevated pressure reduces bubbles extension in the vertical direction, prohibits the “short pass” of fluidization gas in large oblong bubbles/slugs and benefits the gas–solid interaction. The flow regimes variation with gas velocity is affected by the elevated pressure, and demonstrates different features in different local positions of the bed.  相似文献   

3.
This paper reports on the hydrodynamics of a bubble-induced inverse fluidized bed reactor, using a nanobubble tray gas distributor, where solid particles are fluidized only by an upward gas flow. Increasing the gas velocity, the fixed layer of particles initially packed at the top of the liquid starts to move downwards, due to the rise of bubbles in this system, and then gradually expands downwards until fully suspended. The axial local pressure drops and standard deviation were examined to delineate the flow regime comprehensively under different superficial gas velocities. Four flow regimes (fixed bed regime, initial fluidization regime, expanded regime, and post-homogeneous regime) were observed and three transitional gas velocities (the initial fluidization velocity, minimum fluidization velocity, and homogeneous fluidization velocity) were identified to demarcate the flow regime. Three correlations were developed for the three transitional velocities. As the fine bubbles generated from the nanobubble tray gas distributor are well distributed in the entire column, the bed expansion process of the particles is relatively steady.  相似文献   

4.
Most existing models for predicting bubble size and bubble frequency have been developed for freely bubbling fluidized beds. Accurate prediction of bubbling behavior in deep fluidized beds, however, has been a challenge due to the higher degree of bubble coalescence and break up, high probability of the slugging regime, partial fluidization, and chaotic behavior in the bubbling regime. In this work, the bubbling and fluidization behavior of potash particles was investigated in a deep fluidized bed employing a twin-plane electrical capacitance tomography (ECT) system. Solid volume fraction, average bubble velocity, average bubble diameter, and bubble frequency in both bubbling and slugging regimes were measured at two different bed height ratios (H/D = 3.5 and H/D = 3.78). This work is the first to illustrate a sequential view of bubbles at different superficial gas velocities in a fluidized bed. The results show that both the bubble diameter and rising velocity increased with increasing the superficial gas velocity for the two bed heights, with larger values observed in the deeper bed compared to the shallower one. Predicted values for bubble diameter, bubble rise velocity and bubble frequency from different models are compared with the experimental data obtained from the ECT system in this work. Good agreement has been achieved between the values predicted by the previous models and the experimental data for the bubble diameter and bubble rise velocity with an average absolute deviation of 16% and 15% for the bed height of 49 cm and 13% and 8% for the bed height of 53 cm, respectively.  相似文献   

5.
A non-intrusive vibration monitoring technique was used to study the hydrodynamics of a gas–solid fluidized bed. Experiments were carried out in a 15 cm diameter fluidized bed using 226, 470 and 700 μm sand particles at various gas velocities, covering both bubbling and turbulent regimes. Auto correlation function, mutual information function, Hurst exponent analysis and power spectral density function were used to analyze the fluidized bed hydrodynamics near the transition point from bubbling to turbulent fluidization regimes. The first pass of the autocorrelation function from one half and the time delay at which it becomes zero, and also the first minimum of the mutual information, occur at a higher time delay in comparison to stochastic systems, and the values of time delays were maximum at the bubbling to turbulent transition gas velocity. The maximum value of Hurst exponent of macro structure occurred at the onset of regime transition from bubbling to turbulent. Further increase in gas velocity after that regime transition velocity causes a decrease in the Hurst exponent of macro structure because of breakage of large bubbles to small ones. The results showed these methods are capable of detecting the regime transition from bubbling to turbulent fluidization conditions using vibration signals.  相似文献   

6.
Supercritical water (SCW) fluidized bed is a new reactor concept for hydrogen production from biomass or coal gasification. In this paper, a comparative study on flow structure and bubble dynamics in a supercritical water fluidized bed and a gas fluidized bed was carried out using the discrete element method (DEM). The results show that supercritical water condition reduces the incipient fluidization velocity, changes regime transitions, i.e. a homogeneous fluidization was observed when the superficial velocity is in the range of the minimum fluidization velocity and minimum bubbling velocity even the solids behave as Geldart B powders in the gas fluidized bed. Bubbling fluidization in the supercritical water fluidized bed was formed after superficial velocity exceeds the minimum bubbling velocity, as in the gas fluidized bed. Bubble is one of the most important features in fluidized bed, which is also the emphasis in this paper. Bubble growth was effectively suppressed in the supercritical water fluidized bed, which resulted in a more uniform flow structure. By analyzing a large number of bubbles, bubble dynamic characteristics such as diameter distribution, frequency, rising path and so on, were obtained. It is found that bubble dynamic characteristics in the supercritical water fluidized bed differ a lot from that in the gas fluidized bed, and there is a better fluidization quality induced by the bubble dynamics in the supercritical water fluidized bed.  相似文献   

7.
Mohammad Asif 《Particuology》2013,11(3):309-316
Employing well-established mixing rules for mean properties, appropriate expressions are derived for predicting minimum fluidization velocities of multi-component solid mixtures in terms of mono-component values for the velocity and the bed voidage at incipient fluidization. Based on flow regime and the mixing level of constituent species, it is found that these relationships differ significantly from each other, whether related to size-different or density-different mixtures. For mixed beds of size-different mixtures, the effect of volume contraction is accounted for by the mean voidage term, which is absent for segregated beds. Incorporating the volume-change of mixing leads to values of the mixture minimum fluidization velocities even lower than corresponding values for segregated bed, thus conforming to the trend reported in the literature. Size-different mixtures exhibit flow regime dependence irrespective of whether the bed is mixed or segregated. On the other hand, the mixing of constituent species does not affect the minimum fluidization velocity of density-different mixtures, as the difference in the expressions for a segregated and a mixed system is rather inconsequential. Comparison with experimental data available in the literature is made to test the efficacy of the minimum fluidization velocity expressions derived here.  相似文献   

8.
An experimental investigation has been carried out on velocities and amplitudes of pressure disturbances in fluidized beds made of 100–200 μm glass ballotini. Disturbances were originated by gas jetting in a 0.35 m i.d. fluidized bed. A fluidization tube 0.10 m i.d. has also been used. Different types of disturbances have been induced in the bed contained in this tube: injection of a freely rising bubble and of a captive bubble; injection of a bubble chain; and compression of the bed free surface. The dynamic wave character of the disturbances has been shown. Velocities and amplitudes of waves moving through the beds have been measured. In particular, wave velocities have been compared with theoretical results obtained by the application of “pseudo-homogeneous” and “separated phase flow” models.  相似文献   

9.
The fluidization state in the circulating fluidized bed (CFB) boiler is crucial to its stable and safe operation. However, up to now, the research field has not reached unanimity on whether the fluidization regime that the upper furnace of the boiler operates in is the fast fluidization or pneumatic transport. To this end, this paper reviewed relevant research on the transition between the fast fluidization and pneumatic transport of Geldart group B particles, including the flow characteristics of the fast fluidization, the transition condition between the fast fluidization and pneumatic transport, the determination methods of the transport velocity utr and saturation carrying capacity Gs1 and the influencing factors on these two parameters. Previous research findings can provide certain guidelines for the design and optimization of the CFB boiler, and result in plenty of prediction correlations for utr and Gs1. Nonetheless, owing to insufficient data available on Geldart group B particles, especially the ones obtained under high temperature or pressure conditions and in large-scale CFB apparatuses, the existing correlations are not well suited for the prediction of utr and Gs1 of Geldart group B particles. Thus, further efforts are urgently demanded on the fast fluidization transition of Geldart group B particles.  相似文献   

10.
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard devia- tion and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi- industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uo The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the flu- idized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.  相似文献   

11.
Flow regime diagrams for gas-solid fluidization and upward transport   总被引:9,自引:0,他引:9  
Flow regime maps are presented for gas-solids fluidized beds and gas-solids upward transport lines. For conventional gas solids fluidization, the flow regimes include the fixed bed, bubbling fluidization, slugging fluidization and turbulent fluidization. For gas solids vertical transport operation, solids flux must be incorporated in the flow regime diagrams. The flow regimes then include dilute-phase transport, fast fluidization or turbulent flow, slug/bubbly flow, bubble-free dense-phase flow and packed bed flow. In practical circulating fluidized beds and transport risers, operation below the fast fluidization regime is commonly impossible due to equipment limitations. Practical flow regime maps are proposed with the flow regimes, including homogeneous dilute-phase flow, core-annular dilute-phase flow (where there are appreciable lateral gradients but small axial gradients) and fast fluidization (where there are both lateral and axial gradients). The boundary between fast fluidization and dilute-phase pneumatic transport is set by the type A choking velocity, at which the uniform suspension collapses and particles start to accumulate in the bottom region of the transport line, while the mechanism of transition from fast fluidization to dense-phase flow depends on the column and particle diameters.  相似文献   

12.
Fluidized Carbon Bed Cooling (FCBC) is an innovative investment casting process for directional solidification of superalloy components. It takes advantage of a fluidized bed with a base of small glassy carbon beads for cooling and other low-density particles that form an insulating layer by floating to the bed surface. This so-called “Dynamic Baffle” protects the fluidized bed from the direct heat input from the high-temperature heating zone and provides the basis for an improved bed microstructure. The prerequisites for a stable casting process are stable fluidization conditions where neither collapse of the bed nor particle blow out at excessive bubble formation occur.This work aimed to investigate the fluidization behavior of spherical carbon bed material in argon and air at temperatures between 20 to 350 °C. Systematic studies at reduced pressures using the FCBC prototype device were performed to understand the stable fluidization conditions at all stages of the investment casting process. The particle shape factor and size distribution characterization and the measurement of the powder’s minimum fluidization velocity and bed voidage show that this material can be fully utilized as a cooling and buoyancy medium during the FCBC process.  相似文献   

13.
In this paper, the pressure fluctuation in a fluidized bed was measured and processed via standard deviation and power spectrum analysis to investigate the dynamic behavior of the transition from the bubbling to turbulent regime. Two types (Geldart B and D) of non-spherical particles, screened from real bed materials, and their mixture were used as the bed materials. The experiments were conducted in a semi-industrial testing apparatus. The experimental results indicated that the fluidization characteristics of the non-spherical Geldart D particles differed from that of the spherical particles at gas velocities beyond the transition velocity Uc. The standard deviation of the pressure fluctuation measured in the bed increased with the gas velocity, while that measured in the plenum remained constant. Compared to the coarse particles, the fine particles exerted a stronger influence on the dynamic behavior of the fluidized bed and promoted the fluidization regime transition from bubbling toward turbulent. The power spectrum of the pressure fluctuation was calculated using the auto-regressive (AR) model; the hydrodynamics of the fluidized bed were characterized by the major frequency of the power spectrum of the pressure fluctuation. By combining the standard deviation analysis, a new method was proposed to determine the transition velocity Uk via the analysis of the change in the major frequency. The first major frequency was observed to vary within the range of 1.5 to 3 Hz.  相似文献   

14.
Fluidization hydrodynamics are greatly influenced by inter-particle cohesive forces. This paper studies the fluidization of large cohesive particles in a two-dimensional fluidized bed with immersed tubes using “polymer coating” to introduce cohesive force, to gain better understanding of bubbling behavior when particles become cohesive and its effect on chemical processes. The results show that the cohesive force promotes bubble splitting in the tube bank region, thereby causing an increase in the number and a decline in the aspect ratio of the bubbles. As the cohesive force increases within a low level, the bubble number increases and the bubble diameter decreases, while the aspect ratio exhibits different trends at different fluidization gas velocities. The difference in the evolution of bubble size under various cohesive forces mainly takes place in the region without tubes. When the cohesive force is large enough to generate stable agglomerates on the side walls of the bed, the bubble number and the bed expansion sharply decrease. The tubes serve as a framework that promotes the agglomeration, thus accelerating defluidization. Finally, the bubble profile around tubes was studied and found to greatly depend both on the cohesive forces and the location of tubes.  相似文献   

15.
A heated horizontal heat transfer tube was installed 14.8 cm above the distributor plate in a square fluid bed measuring 30.5 × 30.5 cm. Four different Geldart B sized particle beds were used (sand of two different distributions, an abrasive and glass beads) and the bed was fluidized with cold air. The tube was instrumented with surface thermocouples around half of the tube circumference and with differential pressure ports that can be used to infer bubble presence. Numerical execution of the transient conduction equation for the tube allowed the local time-varying heat transfer coefficient to be extracted. Data confirm the presence of the stagnant zone on top of the tube associated with low superficial velocities. Auto-correlation of thermocouple data revealed bubble frequencies and the cross-correlation of thermal and pressure events confirmed the relationship between the bubbles and the heat transfer events. In keeping with the notion of a “Packet renewal” heat transfer model, the average heat transfer coefficient was found to vary in sympathy with the root-mean square amplitude of the transient heat transfer coefficient.  相似文献   

16.
Accurate information concerning riser inventory in a fluidized bed is required in some applications such as the calcium looping process,because it is related to the CO_2 capture efficiency of the system.In a circulating fluidized bed(CFB),the riser inventory is normally calculated from the riser pressure drop;however,the friction and the acceleration phenomena may have a significant influence on the total riser pressure drop.Therefore,deviation may occur in the calculation from the actual mass.For this reason the magnitude of the friction and the acceleration pressure drop in the entire riser is studied in small-scale risers.Two series of studies were performed:the first one in a scaled cold model riser of the 10 kW_(th)facility,and the second one in the 10kW_(th) fluidized bed riser under process conditions.The velocities were chosen to comply with the fluidization regimes suitable for the calcium looping process,namely,the turbulent and the fast.In cold-model experiments in a low-velocity turbulent fluidization regime,the actual weight(static pressure drop) of the particles is observed more than the weight calculated from a recorded pressure drop.This phenomenon is also repeated in pilot plant conditions.In the cold-model setup,the friction and acceleration pressure drop became apparent in the fast fluidization regime,and increased as the gas velocity rose.Within calcium looping conditions in the pilot plant operation,the static pressure drop was observed more than the recorded pressure drop.Therefore,as a conservative approach,the influence of friction pressure drop may be neglected while calculating the solid inventory of the riser.The concept of transit inventory is introduced as a fraction of total inventory,which lies in freefall zones of the CFB system.This fraction increases as gas velocity rises.  相似文献   

17.
The fluidization behavior of Geldart A particles in a gas–solid micro-fluidized bed was investigated by Eulerian–Eulerian numerical simulation. The commonly used Gidaspow drag model was tested first. The simulation showed that the predicted minimum bubbling velocities were significantly lower than the experimental data even when an extremely fine grid size (of approximately one particle diameter) was used. The modified Gibilaro drag model was therefore tested next. The predicted minimum bubbling velocity and bed voidage were in reasonable agreement with the experimental data available in literature. The experimentally observed regime transition phenomena from bubbling to slugging were also reproduced successfully in the simulations. Parametric studies indicated that the solid-wall boundary conditions had a significant impact on the predicted gas and solid flow behavior.  相似文献   

18.
An ultra-fast X-ray tomographic scanner is applied to study the hydrodynamics in a bubbling fluidized bed with and without vertical internals (e.g., heat exchanger tubes). The objective of this study is to understand the influence of vertical internals on hydrodynamic properties such as bubble volume, size and velocity and to provide measurement data for the design and scale-up of catalytic bubbling fluidized bed reactors with vertical internals. With these new measurements, correlations of bubble properties can be developed to reliably scale-up bubbling fluidized beds with vertical internals. For the investigated reactor with Geldart A/B particles, no relation between bubble size and velocity was observed for individual bubbles, i.e.; smaller bubbles tend to rise with higher velocities. A significant reduction in bubble size and sharpening of the bubble size distribution was generally obtained for a bed with vertical internals.  相似文献   

19.
An experimental study was made of the thermal and hydraulic characteristics of a three-phase fluidized bed cooling tower. The experiments were carried out in a packed tower of 200 mm diameter and 2.5 m height. The packing used was spongy rubber balls 12.7 mm in diameter and with a density of 375 kg/m3. The tower characteristic was evaluated. The air-side pressure drop and the minimum fluidization velocity were measured as a function of water/air mass flux ratio (0.4–2), static bed height (300–500 mm), and hot water inlet temperature (301–334 K).

The experimental results indicate that the tower characteristics KaV/L increases with increases in the bed static height and hot water inlet temperature and with decreases in the water/air mass flux ratio. It is also shown that the air-side pressure drop increases very slowly with increases in air velocity. The minimum, fluidization velocity was found to be independent of the static bed height.

The data obtained were used to develop a correlation between the tower characteristics, hot water inlet temperature, static bed height, and the water/air mass flux ratio. The mass transfer coefficient of the three-phase fluidized bed cooling tower is much higher than that of packed-bed cooling towers with higher packing height.  相似文献   


20.
A model for a single fully developed bubble moving in an unbounded fluidized bed is presented. The model allows bubble growth or shrinkage during the rise inside the bed, as well as dependence of the rise velocity upon specified bed parameters. Limiting cases of nearly spherical bubbles and of sufficiently large bubbles whose form resembles that of a spherical segment are considered in more detail. The form of bubbles rising in either fluidized beds or one-phase liquids, and its dependence on the effective “surface tension” acting on the bubble boundary are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号