首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
本文采用直接数值模拟(DNS)方法研究了气固两相混合层的涡量场和颗粒扩散,分析了湍流混合层中涡结构的卷起和配对过程,并讨论了大尺度涡结构的配对过程对平均速度、雷诺应力的影响。同时分析了混合层中不同Stokes数的颗粒在涡结构的作用下的混合和扩散。结果显示Stokes数为1的颗粒主要分布在流场大尺度涡结构的外边界,而Stokes数为0.01在涡结构的作用下,在流场中充分混合。  相似文献   

2.
The production of periodic oscillations in a supersonic boundary layer at the moderate and high Mach numbers (M = 2 and 5.35) is investigated within the framework of the weakly nonlinear stability theory of the second order in nonlinearity. The model includes the effects of self-action, such as the generation of stationary secondary harmonics and the disturbances of double frequencies. It is shown that for two-dimensional vortex disturbances, the character of the excitation of vortex disturbances changes from the mild one to the stiff one with the increasing Mach number, which leads to a reduction of the critical Reynolds number Rec. For three-dimensional disturbances of low azimuthal wave numbers, a supercritical auto-oscillatory regime sets in. A complex regime realizes for two-dimensional acoustic disturbances at M = 5.35 with a stiff excitation in the region of Rec.  相似文献   

3.
使用两方程Menter-SST模型, 对来流Mach数为3时的斜激波与轴对称边界层的相互干扰现象进行了数值模拟与定性、定量分析。研究了斜楔激波发生器楔角和来流单位Reynolds数变化对干扰区流动的影响, 总结了参数变化引起的流动分离变化规律; 此外, 还计算了与三维计算中心对称面上的入射激波等效的二维情形, 并将三维结果与二维情形进行对比, 对比结果显示中心对称面上的壁面压力系数、分离涡尺寸、涡量分布等与相应的二维情形存在明显差异。   相似文献   

4.
Feasibility of a new integrated amplitude modulator/switch operating up to the visible spectrum, based on the absorption of light due to the linear interaction of the incident laser and a two-dimensional plasma layer is demonstrated. Plasma layers are generated via the Muller effect at the waveguide's interfaces. A plasma wave is excited in the two-dimensional gas when it is illuminated by electromagnetic radiation. Thus, due to the energy transfer from the electromagnetic wave to the plasma wave, the output light intensity can be controlled. The device is capable of amplitude modulation of guided beams in dielectric waveguides. Analysis based on both full-classical and semiclassical approaches are performed and are compared.  相似文献   

5.
In the majority of fluid–structure interaction problems, the biggest challenge lies in the fundamental understanding of the flow physics. Forced mixing layers is an important phenomenon found in many cases of flow-induced vibrations and acoustics. The response of a mixing layer to high-speed stream acoustic forcing is investigated with a theoretical and experimental approach. Two different experiments demonstrating the fluid mechanic phenomenon are presented. The first experiment consists of a circular jet impinging on a vibrating plate. The second experiment demonstrates the mixing layer resonance in the context of a fluidelastic instability causing high-amplitude vibrations in gas turbine high-pressure compressor rotor blades. Both the plate and the adjacent blade vibration induce an acoustic feedback that propagates within the jet and blade tip clearance flow, respectively. The resonance was found to occur when the feedback wavelength matched either the jet-to-plate or the inter-blade distance. In both experimental cases, the resonance condition has been simply modeled by the coincidence of a 1D feedback wave, which propagates upstream at reduced velocity by the high-speed flow. The coupling between the jet induced mixing layer and the feedback wave is assumed to naturally occur when one of the wave crests reaches the separation edge. The objective of this study is to improve the understanding of the coupling mechanism between an emanating shear layer and the acoustic forcing originating within a fast flow stream. The study is based on a simplified analytical model in order to enlarge the current understanding of the mixing layer receptivity to the more specific case of its response to high-speed stream forcing. To identify the mixing layer resonant modes, an analytical resonance condition is proposed. It is found that the mixing layer response becomes spatially resonant for specific source locations downstream in the high-speed flow. The study also provides an analytical mean to capture the critical source location periodicity that has been experimentally observed. The resulting theoretical prediction of the resonant source locations is in good agreement with the experimental data. Therefore, it supports the stream forced mixing layer analytical model and the proposed spatial resonance condition. The simple 1D reduced speed feedback wave model, which has been used to identify the experimental resonance conditions, is also in good agreement, and thus validated, with the results of this study.  相似文献   

6.
采用格子涡方法对二维平板混合层流动进行了数值模拟,重点考察了格子涡方法定量模拟混合层流动流场下游不同流向位置各湍流统计平均量的能力。模拟结果表明:除横向脉动速度均方根比实验值大外,混合层流动在下游不同流向位置的流向平均速度,流向脉动速度均方根和雷诺应力的模拟结果都与实验结果定量符合得很好。此外,模拟结果还很好地反应出混合层流动的自相似性质。从而表明,格子涡方法具有对空间发展混合层流动进行较精确的定量模拟的能力。  相似文献   

7.
可压缩混合层光学传输效应理论分析与实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
甘才俊  李烺  马汉东  熊红亮 《物理学报》2014,63(5):54703-054703
利用量级分析和风洞实验研究了可压缩混合层流动第二发展阶段气动光学效应的规律性.理论分析主要针对二维大尺度结构存在时视线误差(boresight error,BSE)与混合层流场及其特征参数之间的关系进行了讨论.研究结果表明:在混合层发展的第二阶段,时均BSE与对流马赫数呈现出复杂的非线性关系;同时还发现流场中的湍动能和混合层界面处的雷诺应力分布也是影响时均BSE的重要因素;采用细光束穿越混合层流场的风洞试验结果主要证实了时均BSE与对流马赫数之间的非线性关系.  相似文献   

8.
The evolution of long nonlinear surface wave excitations in a Bénard-Marangoni shallow liquid layer is studied when the system is far from its instability threshold. For (M -Mc)/Mc = 0(1), thus for surface wave excitations with possible large amplitude, where M is the Marangoni number of the system and Mc is its critical value bifurcating to oscillatory convecting state from a motionless one, the surface wave displacement is found to obey a dispersion-modified Burgers equation whose kink-like solutions are also studied.  相似文献   

9.
Fe/M (M = Ag, Zn and Sn) multilayers prepared by a vacuum evaporation method are studied by Mössbauer spectroscopy (MS), Rutherford backscattering spectroscopy (RBS) and X-ray diffraction (XRD). For the case of an M = Ag multilayer, MS reveals that Fe in the multilayer remains as an-phase down to the layer thickness of 10 nm. This result is in agreement with the RBS result that Fe and Ag form a completely discrete layer structure without any mutual mixing. For the case of M = Zn and Sn, RBS reveals that a considerable mixing has taken place between Fe and Sn during the specimen preparation. MS on Fe/Sn specimens with different layer thickness shows that an alloy phase of about 5 nm thickness is formed at the interface. Structural as well as magnetic properties of the alloy phase are discussed based on MS at different temperatures and on reported results of the intermetallic compound FeSn.  相似文献   

10.
We present a density functional theory study on the magnetic properties of two-dimensional surface alloys of the type MxN1−x (M=Fe, Co and Ni; N=Pt, Au, Ag, Cd and Pb) on Rh(1 1 1) for x=0.0, 0.25, 0.33, 0.5, 0.67, 0.75 and 1.0, in two types of geometric arrangements—striped phases or linear-chain type, and non-striped phases or mixed checkerboard type. Many pairs among these are bulk-immiscible but show mixing on the surface. We find that the trend in the magnetic moment of surface alloys of N with a given M follows the number of valence electrons in N: the higher the number of valence electrons, the lower the magnetic moment. Overlayer atoms when put on hcp sites show higher moment compared to fcc sites. In general, for a given composition x, linear-chain type structures show a reduced magnetic moment compared to checkerboard type structures. We find that Pb, when alloyed with magnetic elements (Fe, Co and Ni), has a lowering effect on their magnetic moments.  相似文献   

11.
Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role.  相似文献   

12.
刘强  罗振兵  邓雄  杨升科  蒋浩 《物理学报》2017,66(23):234701-234701
为了探究超声速边界层流动稳定性及其转捩控制机理,提出基于合成冷/热射流的边界层速度-温度耦合控制方法,并通过数值模拟研究了Ma=4.5超声速平板边界层不稳定波的传播,采用线性稳定性理论中的时间模式分析了壁面吹吸、射流温度、扰动频率、扰动振幅等对不稳定波控制效果的影响.结果表明:无射流控制时,边界层内同时存在不稳定的第一模态扰动波和第二模态扰动波,且二维波形式的第二模态占主导地位;壁面吹吸作用下,仅出现更加不稳定的第二模态,第一模态被抑制;速度-温度耦合控制下,射流温度对扰动模态的不稳定区域大小及扰动增长率影响显著,射流温度与来流温度不同时,温度的脉动使得流动转捩为湍流的速度加快,边界层速度型更加饱满,抗干扰能力增强,流动稳定性提高;高频的吹吸扰动对流场的控制效果优于低频扰动,扰动频率超过400 Hz时,第二模态扰动波时间增长率降低,扰动分量对边界层速度剖面和温度剖面的修正加快,第二模态更加稳定;扰动振幅减小为主流速度的1%时,仅出现时间增长率较小的第二模态,控制效果较好,进一步减小时,第一模态重新出现,并且波数范围与第二模态先重合后分离,对应的时间增长率先增加后减小.研究结果为边界层转捩控制技术提供了新的思路.  相似文献   

13.
陈大伟  王裴  孙海权  蔚喜军 《物理学报》2016,65(2):24701-024701
强冲击下的物质变形、破坏及诱发的轻重介质混合问题,是内爆压缩科学和工程应用领域的研究重点.本文针对爆轰波对碰条件下的复杂加载动力学过程及其动载破坏形态特征,开展数值模拟研究与极曲线理论分析.设计了爆轰波对碰驱动平面锡飞层的计算模型,获得了爆轰加载动力学过程及波系相互作用物理图像,分析了锡飞层对碰区自由表面速度历史的典型特征.给出了锡飞层中折射激波对碰发生马赫反射的临界条件,解读了三波结构的传播行为,阐明了对碰区内存在"一维正冲击"区域,一维区外存在单次斜冲击向两次斜冲击过渡的复杂加载动力学过程,提出了对碰区冲击动力学模型,揭示了影响对碰区动载行为特征的机理.数值模拟结果与极曲线理论分析结果相互印证,符合较好.本文的研究成果,将为深入理解和解读对碰区特殊的物质破坏及混合现象提供重要的理论支撑.  相似文献   

14.
LiNbO3:Fe的光致光衍射   总被引:5,自引:0,他引:5       下载免费PDF全文
本文研究了单光束辐照厂LiNbO3:Fe的衍射光锥。它可以考虑为入射光束与其晶体后表面反射束及由晶体缺陷所致的散射光束的简并四波混频。光锥的锥角由其位相匹配条件△k=0确定。它可用Ewald球的作图法求解。同时也讨论了一种由时间分辨简并四波混频所产生的衍射光锥。实验结果与理论一致。 关键词:  相似文献   

15.
The dispersion of the Rayleigh wave on Cu(100) has been measured by high resolution electron energy loss spectroscopy (EELS) throughout the two-dimensional Brillouin zone in the . The experimental data can be matched with a nearest neighbour central force model when the force constant between the first and second layerk 12 is stiffened by 20%. However, the data are likewise explained by assuming stress within the surface layer. The stress could arise from a tendency of the surface layer to contract.  相似文献   

16.
The ground state of the two-dimensional electron gas near nu=1 is investigated by inelastic light scattering measurements carried down to very low temperatures. Away from nu=1, the ferromagnetic spin wave collapses and a new low-energy spin wave emerges below the Zeeman gap. The emergent spin wave shows soft behavior as its energy increases with temperature and reaches the Zeeman energy for temperatures above 2 K. The observed softening indicates an instability of the two-dimensional electron gas towards a magnetic order that breaks spin rotational symmetry. We discuss our findings in light of the possible existence of a Skyrme crystal.  相似文献   

17.
An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.  相似文献   

18.
The decay of 184mRe has been investigated through γ-ray and conversion electron studies. The band head of the Kπ = 2? octupole band has been established at 1130.0 keV. The E2/M1 mixing ratios of three transitions from the γ-vibrational band to the ground state band have been determined by angular correlation measurements. A mixing of El, M2 and E3 multipolarity has been derived for the 921 keV transition combining angular correlation and conversion electron data. A value B(E3, 0+ → 3? = (25 ± 5) × 104e2 · fm6 was obtained from the measured E2/M1 mixing of the 91 keV 3? → → 2? transition and γ-branchings. The data are discussed in terms of the collective model taking into account band mixing.  相似文献   

19.
A two-dimensional integral full-wave model is used to calculate poloidal forces driven by mode conversion in tokamak plasmas. In the presence of a poloidal magnetic field, mode conversion near the ion-ion hybrid resonance is dominated by a transition from the fast magnetosonic wave to the slow ion cyclotron wave. The poloidal field generates strong variations in the parallel wave spectrum that cause wave damping in a narrow layer near the mode conversion surface. The resulting poloidal forces in this layer drive sheared poloidal flows comparable to those in direct launch ion Bernstein wave experiments.  相似文献   

20.
We show that the Kelvin-Helmholtz instability excited by a localized perturbation yields a self-similar wave. The instability of the mixing layer was first conceived by Helmholtz as the inevitable growth of any localized irregularity into a spiral, but the search and uncovering of the resulting self-similar evolution was hindered by the technical success of Kelvin's wavelike perturbation theory. The identification of a self-similar solution is useful since its specific structure is witness of a subtle nonlinear equilibrium among the forces involved. By simulating numerically the Navier-Stokes equations, we analyze the properties of the wave: growth rate, propagation speed and the dependency of its shape upon the density ratio of the two phases of the mixing layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号