首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Trapping xenon in functionalized cryptophane cages makes the sensitivity of hyperpolarized (HP) 129Xe available for specific NMR detection of biomolecules. Here, we study the signal transfer onto a reservoir of unbound HP xenon by gating the residence time of the nuclei in the cage through the temperature-dependant exchange rate. Temperature changes larger than approximately 0.6 K are detectable as an altered reservoir signal. The temperature response is adjustable with lower concentrations of caged xenon providing more sensitivity at higher temperatures. Ultrasensitive detection of functionalized cryptophane at 310 K is demonstrated with a concentration of 10 nM, corresponding to a approximately 4000-fold sensitivity enhancement compared to conventional detection. This makes HPNMR capable of detecting such constructs in concentrations far below the detection limit of benchtop uv-visible light absorbance.  相似文献   

2.
Molecular imaging based on saturation transfer in exchanging systems is a tool for amplified and chemically specific magnetic resonance imaging. Xenon-based molecular sensors are a promising category of molecular imaging agents in which chemical exchange of dissolved xenon between its bulk and agent-bound phases has been use to achieve sub-picomolar detection sensitivity. Control over the saturation transfer dynamics, particularly when multiple exchanging resonances are present in the spectra, requires saturation fields of limited bandwidth and is generally accomplished by continuous wave irradiation. We demonstrate instead how band-selective saturation sequences based on multiple pulse inversion elements can yield saturation bandwidth tuneable over a wide range, while depositing less RF power in the sample. We show how these sequences can be used in imaging experiments that require spatial-spectral and multispectral saturation. The results should be applicable to all CEST experiments and, in particular, will provide the spectroscopic control required for applications of arrays of xenon chemical sensors in microfluidic chemical analysis devices.  相似文献   

3.
Silica aerogels represent a new class of open-pore materials with pore dimensions on a scale of tens of nanometers, and are thus classified as mesoporous materials. In this work, we show that the combination of NMR spectroscopy and chemical-shift selective magnetic resonance imaging (MRI) can resolve some of the important aspects of the structure of silica aerogels. The use of xenon as a gaseous probe in combination with spatially resolved NMR techniques is demonstrated to be a powerful, new approach for characterizing the average pore structure and steady-state spatial distributions of xenon atoms in different physicochemical environments. Furthermore, dynamic NMR magnetization transfer experiments and pulsed-field gradient (PFG) measurements have been used to characterize exchange processes and diffusive motion of xenon in samples at equilibrium. In particular, this new NMR approach offers unique information and insights into the nanoscopic pore structure and microscopic morphology of aerogels and the dynamical behavior of occluded adsorbates. MRI provides spatially resolved information on the nature of the flaw regions found in these materials. Pseudo-first-order rate constants for magnetization transfer among the bulk and occluded xenon phases indicate xenon-exchange rate constants on the order of 1 s−1for specimens having volumes of 0.03 cm3. PFG diffusion measurements show evidence of anisotropic diffusion for xenon occluded within aerogels, with nominal self-diffusivity coefficients on the order ofD= 10−3cm2/s.  相似文献   

4.
We present a Hamiltonian that can be used for amplifying the signal from a quantum state, enabling the measurement of a macroscopic observable to determine the state of a single spin. We prove a general mapping between this Hamiltonian and an exchange Hamiltonian for arbitrary coupling strengths and local magnetic fields. This facilitates the use of existing schemes for perfect state transfer to give perfect amplification. We further prove a link between the evolution of this fixed Hamiltonian and classical cellular automata, thereby unifying previous approaches to this amplification task. Finally, we show how to use the new Hamiltonian for perfect state transfer in the scenario where total spin is not conserved during the evolution, and demonstrate that this yields a significantly different response in the presence of decoherence.  相似文献   

5.
The study of the dissolution of laser-polarized xenon in degassed deuterated benzene is reported. We show that the time evolution of the xenon signal implies that a transient convective process takes place. It is characterized by velocity-encoding magnetic resonance measurements and MRI experiments.  相似文献   

6.
化学交换饱和转移(Chemical Exchange Saturation Transfer,CEST)技术作为一种新型的磁共振成像(Magnetic Resonance Imaging,MRI)技术.它的原理为溶质池中被激发饱和的质子与游离水中未被饱和的质子间的化学交换,能够引起水质子磁共振信号的下降,从而获得组织内生物分子的相关信息.由于质子间的交换速率kex与组织微环境的pH值之间存在直接联系,因而可以通过溶质质子的CEST信号对活体组织进行pH成像.目前用于pH成像的溶质分子既包括内源性游离的蛋白质、多肽分子,还包括一系列的外源性小分子和金属螯合物.通过不同类型的比率法、内源性胺和酰胺浓度-独立检测(Amine and Amide Concentration-independent Detection,AACID)等成像方法,能够获得肾脏、中风脑组织以及肿瘤组织的pH图谱.本文详细总结了2000年以来利用CEST技术进行pH成像方面的研究进展,包括对比剂、成像方法和相关应用,展望了活体组织pH成像的发展趋势和应用前景.  相似文献   

7.
The presence of highly concentrated dissolved laser-polarized xenon (approximately 1mol/L, polarization up to 0.2) induces numerous effects on proton and xenon NMR spectra. We show that the proton signal enhancements due to (129)Xe-(1)H cross-relaxation (SPINOE) and overall shifts of the proton resonances due to the average dipolar shift created by the intense xenon magnetization are correlated. Protons behave as very useful sensors of the xenon magnetization. Indeed the xenon resonances exhibit many features such as superimposition of narrow lines on the main resonance due to clustering effects, or such as a polarization-dependent line broadening that is tentatively assigned to the effects of temperature fluctuations that decorrelate some distant dipolar field effects from local interactions, transforming xenon spins from "like" to "unlike" spins. These spectral features make difficult the determination of the average dipolar field by means of the xenon resonance but have interesting consequences on the heteronuclear polarization transfer experiment in Hartmann-Hahn conditions (SPIDER).  相似文献   

8.
We develop an analytical model of the evolution of a plasma channel produced in rare gases (argon and xenon) by a femtosecond KrF laser pulse. We show that the strong nonequilibrium of the photoelectron energy spectrum and the presence of the Ramsauer minimum in the transport scattering cross section makes the channel optically more dense as compared to the non-ionized gas in the microwave frequency band, and consequently such a channel appears to be a waveguide. In xenon, this nonequilibrium state of the plasma leads to the transportation and amplification of the microwave signal during the relaxation process of the photoelectron energy spectrum.  相似文献   

9.
We present simultaneous measurements of adsorption isotherms and dielectric isotherms for krypton and xenon on boron nitride. Dielectric measurements give a good characterization of monolayer formation and completion, and provide new information on the dielectric properties evolution from a two-dimensional system towards the bulk.  相似文献   

10.
Matthias Koch 《Surface science》2006,600(18):3586-3589
Nuclear magnetic resonance (NMR) is performed on monolayer (ML) amounts of adsorbed 129Xe on a single crystal substrate. The inherently low sensitivity of NMR is overcome by using highly nuclear spin polarized 129Xe that has been produced by optical pumping. A polarization of 0.8 is regularly achieved which is 105 times the thermal (Boltzmann) polarization. The experiments are performed with a constant flux of xenon atoms impinging on the surface, typically 4 ML/s. The chemical shift (σ) of 129Xe is highly sensitive to the Xe local environment. We measured profoundly different shifts for the Xe bulk, for the surface of the Xe bulk, and for Xe on CO/Ir(1 1 1). The growth of the bulk is seen in a phase transition like change of σ as a function of temperature at constant Xe flux. At temperatures where no bulk forms at a flux of 4 ML/s, the xenon exchange rate was measured by a spin inversion/recovery method. The exchange time of Xe is found to be 0.24 s at 63.4 K and 64.4 K and somewhat longer at 61.2 K. An analysis is given involving the desorption out of the second layer and fast mixing of first and second layer atoms at these temperatures.  相似文献   

11.
The porosity in porous silicon was characterized using hyperpolarized (HP) xenon as a probe. HP xenon under conditions of continuous flow allows for the rapid acquisition of xenon NMR spectra that can be used to characterize a variety of materials. Two-dimensional exchange spectroscopy (EXSY) (129)Xe NMR experiments using HP xenon were performed to obtain exchange pathways and rates of xenon mobility between pores of different dimensions within the structure of porous silicon and to the gas phase above the sample. Pore sizes are estimated from chemical shift information and a model for pore geometry is presented.  相似文献   

12.
It has been previously shown that intrinsic metabolites can be imaged based on their water proton exchange rates using saturation transfer techniques. The goal of this study was to identify an appropriate chemical exchange site that could be developed for use as an exogenous chemical exchange dependent saturation transfer (CEST) contrast agent under physiological conditions. These agents would function by reducing the water proton signal through a chemical exchange site on the agent via saturation transfer. The ideal chemical exchange site would have a large chemical shift from water. This permits a high exchange rate without approaching the fast exchange limit at physiological pH (6.5-7.6) and temperature (37 degrees C), as well as minimizing problems associated with magnetic field susceptibility. Numerous candidate chemicals (amino acids, sugars, nucleotides, heterocyclic ring chemicals) were evaluated in this preliminary study. Of these, barbituric acid and 5, 6-dihydrouracil were more fully characterized with regard to pH, temperature, and concentration CEST effects. The best chemical exchange site found was the 5.33-ppm indole ring -NH site of 5-hydroxytryptophan. These data demonstrate that a CEST-based exogenous contrast agent for MRI is feasible.  相似文献   

13.
A sample of polystyrene beads, 18 μm in diameter, has been sealed in an NMR tube under 10 atm of xenon gas. Two dimensional,129Xe NMR spectra show cross peaks between the resonances corresponding to xenon in the free gas and the sorbed state, indicating that appreciable exchange occurs during the mixing time of the NMR experiment. Selective saturation of the free gas resonance attenuates the integrated intensity of the sorbed xenon resonance as a function of saturation time, thus allowing the accurate measurement of the exchange rates between the gas and the sorbed states. A model has been developed using a slightly modified form of Crank’s treatment of diffusion in a sphere which allows for the accurate determination of the diffusion coefficient for xenon in the sorbed state. The diffusion coefficient for xenon in polystyrene at 25°C is determined to be 2.9·10?9 cm2/s.  相似文献   

14.
Chemical exchange saturation transfer (CEST) MRI is increasingly used to probe mobile proteins and microenvironment properties, and shows great promise for tumor and stroke diagnosis. However, CEST MRI contrast mechanism is complex, depending not only on the CEST agent concentration, exchange and relaxation properties, but also varying with experimental conditions such as magnetic field strength and RF power. Hence, it remains somewhat difficult to quantify apparent CEST MRI contrast for properties such as pH, temperature and protein content. In particular, CEST MRI is susceptible to RF spillover effects in that RF irradiation may directly saturate the bulk water MR signal, leading to an optimal RF power at which the CEST contrast is maximal. Whereas RF spillover is generally considered an adverse effect, it is noted here that the optimal RF power strongly varies with exchange rate, although with negligible dependence on labile proton concentration. An empirical solution suggested that optimal RF power may serve as a sensitive parameter for simultaneously determining the labile proton content and exchange rate, hence, allowing improved characterization of the CEST system. The empirical solution was confirmed by numerical simulation, and experimental validation is needed to further evaluate the proposed technique.  相似文献   

15.
The use of an artificial neural network as an optimization technique for treating the inverse problem of obtaining electron collision cross section from electron transport data is explored in which electron-impact cross sections from measured drift velocities, characteristic energies, and other swarm data are obtained. Momentum transfer cross sections obtained for a model problem and for xenon using a neural network are presented  相似文献   

16.
17.
An amplifier is characterized by its transfer function T, which expresses the dependence of the output signal on the input signal. This signal may be related to power, intensity, energy of a pulse, or its fluence, or any similar physical quantity. The internal structure of the amplified signal (e.g., its spectral content, polarization, temporal behavior, and spatial distribution) is not taken into account. The amplifier is considered to be spatially homogeneous and uniformly pumped. The transfer function is supposed to be known (measured in an experiment). The problem of reconstruction of the behavior of the signal inside the amplifier is formulated. For a given transfer function T, the evolution of the signal inside is interpreted as the superfunction F, satisfying the transfer equation F(z + 1) T(F(z)), where z is of coordinate along the propagation direction, while the length of the amplifier is used as a unit of measurement. (For simplicity, distances are measured in units of the length of the amplifier.) Two examples of realistic transfer function T are considered; they correspond to amplification of continuous wave and to amplification of pulses. In these examples, the transfer function and the distribution of the signal along the amplifier can be expressed in terms of special functions. The iterative procedure is suggested as a general method of reconstructing the signal along the amplifier, if neither the transfer function T, nor the superfunction F can be expressed with a simple combination of special functions. The examples show that the iterations converge to a physically meaningful solution. This method is expected to be useful for the characterization of laser materials from the measurement of the transfer function of a bulk sample.  相似文献   

18.
Several experimental techniques have been developed to utilize spin-polarized xenon gas for sensitivity and selectivity enhancement in surface studies using solid-state NMR. Although previously reported as a viable spin polarization transfer mechanism, the details of high-field cross-polarization (CP) have not been thoroughly investigated. We recently reported observations of CP from an adsorbed layer of hyperpolarized xenon (HP Xe) to a variety of surface nuclei at temperatures as high as 323 K [J. Am. Chem. Soc. 105 (2001) 1412]. In this paper, we investigate many of the issues associated with HP Xe surface CP studies, including polarization transfer kinetics and the effects of temperature on the dynamics. Protonated and methylated silica samples are used as model systems for comparison. A comparison of the rate analysis data from CP and SPINOE (Spin Polarization-Induced Nuclear Overhauser Effect) experiments provides information on the origin of the difference in polarization transfer efficiencies between the two techniques. Lineshape analysis of 1H spectra for CP and SPINOE experiments demonstrates the difference in selectivity of methods due to longer SPINOE evolution times that lead to greater spin diffusion. The results of this work help to assess the viability of HP Xe CP as a surface analysis technique.  相似文献   

19.
XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.  相似文献   

20.
We present an improved model for the dissipation and dispersion in an acoustic resonator filled with xenon near its critical temperature Tc. We test the model with acoustic measurements in stirred xenon that have a temperature resolution of (T - Tc)/Tc approximately 7 x 10(-6). The model includes the frequency-dependent bulk viscosity calculated numerically from renormalization-group theory and it includes critical-point adsorption. Because the density of adsorbed xenon exceeds the critical density, the bulk viscosity's effect on surface dissipation is reduced, thereby improving the agreement between theory and experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号