首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This investigation had multiple goals. One goal was to obtain definitive information about the heat transfer characteristics of co-axial impinging jets, and this was achieved by measurements of the stagnation-point, surface-distribution and average heat transfer coefficients. These results are parameterized by the Reynolds number Re which ranged from 5000 to 25,000, the dimensionless separation distance between the jet exit and the impingement plate H/D (4–12), and the ratio of the inner diameters of the inner and outer pipes d/D (0–0.55). The d/D = 0 case corresponds to a single circular jet. The other major goal of this work was to quantify the velocity field of co-axial free jets (impingement plate removed). The velocity-field study included both measurements of the mean velocity and the turbulence intensity.It was found that the variation of the stagnation-point heat transfer coefficient with d/D attained a maximum at d/D = 0.55. Furthermore, the variation of the local heat transfer coefficient across the impingement surface was more peaked for d/D = 0 and became flatter with decreasing d/D. This suggests that for cooling a broad expanse of surface, co-axial jets of high d/D are preferable. On the other hand, for localized cooling, the single jet (d/D = 0) performed the best. In general, for a given Reynolds number, a co-axial jet yields higher heat transfer coefficients than a single jet. Off-axis velocity peaks were encountered for the jets with d/D = 0.105. The measurements of turbulence intensity yielded values as high as 18%.  相似文献   

2.
An experimental study of the flow field in a two-dimensional wall jet has been conducted. All measurements were carried out using hot-wire anemometry. The experimental facility has a rectangular slot nozzle of high aspect ratio l/b = 100 (where l and b are the length and height slot, respectively). Mean velocities and Reynolds stresses were determined with three nozzle Reynolds numbers (Re = 1 × 104, 2 × 104 and 3 × 104) and four different inclination angles between the wall and the flow velocity at the nozzle (β = 0°, 10°, 20° and 30°). Results indicate that all wall jets are self-preserving in the developed region. Normal to the wall two regions can be identified: one similar to a plane free jet and the other similar to a boundary layer. Downstream the interaction between these two regions creates a mixed or third region. The logarithmic region increases with the distance from the nozzle and with the Reynolds number. For the inclined wall jet, the spreading rate expressed in terms of jet half-width or maximum velocity decay with respect to the streamwise distance, asymptotes to a linear law. The streamwise locations where the jet becomes self-similar are farther from the exit than in parallel wall jet. The slope of both half-width and maximum velocity decay in the developed region are affected by both wall jet inclination angle and nozzle exit Reynolds number.  相似文献   

3.
Laboratory experiments were carried out to study the effects of sand particles on circular sand–water wall jets. Mean and turbulence characteristics of sand particles in the sand–water wall jets were measured for different sand concentrations co ranging from 0.5% to 2.5%. Effects of sand particle size on the centerline sand velocity of the jets were evaluated for sand size ranging from 0.21 mm to 0.54 mm. Interesting results with the range of measurements are presented in this paper. It was found that the centerline sand velocity of the wall jets with larger particle size were 15% higher than the jets with smaller particle size. Concentration profiles in the vertical direction showed a peak value at x/d = 5 (where x is the longitudinal distance from the nozzle and d is the nozzle diameter) and the sand concentration decreased linearly for x/d > 5. Experimental results showed that the turbulence level enhanced from the nozzle to x/d = 10. For sand–water wall jets with a higher concentration (co = 1.5–2.5%), the turbulence intensity became smaller than the corresponding single-phase wall jets by 34% due to turbulent modulation. A modified logarithmic formulation was introduced to model the longitudinal turbulent intensity at the centerline and along the axis of the jet.  相似文献   

4.
The effect of sidewalls on rectangular jets   总被引:1,自引:0,他引:1  
An experimental study is presented regarding the influence of sidewalls on the turbulent free jet flow issuing from a smoothly contracting rectangular nozzle of aspect ratio 15. “Sidewalls” are two parallel plates, flush with each of the slots’ short sides, practically establishing bounding walls extending the nozzle sidewalls in the downstream direction. Measurements of the streamwise and lateral velocity mean and turbulent characteristics have been accomplished, with an x-sensor hot wire anemometer, up to an axial distance of 35 nozzle widths, for jets with identical inlet conditions with and without sidewalls. Centreline measurements for both configurations have been collected for three Reynolds numbers, ReD = 10,000, 20,000 and 30,000. For ReD = 20,000 measurements in the transverse direction were collected at 13 different downstream locations in the range, x = 0–35 nozzle widths, and in the spanwise direction at three different downstream locations, x = 2, 6 and 25 nozzle widths.Results indicate that, the two jet configurations (with and without sidewalls) produce statistically different flow fields. Sidewalls do not lead to the production of a 2D flow field as undulations in the spanwise mean velocity distribution indicate. They do increase the two-dimensionality of the jet increasing the longevity of 2D spanwise rollers structures formed in the initial stages of entrainment, which are responsible for the convection of longitudinal momentum towards the outer field, establishing larger streamwise mean velocities at the jet edges. In the near field, up to 25 nozzle widths, lower outward lateral velocities in the presence of the sidewalls are held responsible for the decrease of turbulent terms including rms of velocity fluctuations and Reynolds stresses. Skewness factors increase monotonically across the shear layers from negative values to positive forming sharp peaks at the outer edges of the jet, illustrative of the presence of well defined 2D roller structures in the jet with sidewalls.  相似文献   

5.
An experimental study using Particle Image Velocimetry (PIV) on free jets issuing from different orifice plate (OP) nozzles is reported. Mean velocity, turbulence intensity and higher order profiles relevant for large and small scale mixing are considered in the near field and interaction zone (0 < X/D < 20). This is done to determine mixing enhancement due to rectangular, squared, elliptic and triangular nozzles in comparison to circular nozzle results in two orthogonal planes. The effect of Reynolds number on the differences among the nozzle shapes is also considered by performing measurements just after laminar–turbulent transition (Re = 8000) and in the fully turbulent regime (Re = 35,000). The results at low Reynolds number show two classes of jets, i.e. at one side, those closer to axial-symmetric conditions, as circular, square and triangular jets, whereas on the other side those with elongated nozzles as rectangular and elliptic. The reason for the different behavior of the latter is connected to the phenomenon of axis-switching which allows a rearrangement of turbulence over the different velocity components and directions. However, for the highest Reynolds number investigated, all nozzles show similar behavior especially in the jet far field (X/D > 10), thus suggesting a significant Reynolds number dependence of the results.  相似文献   

6.
We report flow visualisations and laser Doppler anemometry (LDA) velocity measurements in the near field of two swirling jets. The Reynolds number based on jet diameter and bulk velocity at the nozzle exit is 1.4 × 105. In the first jet, a small recirculation region is formed around the jet axis, while, in the second, the streamwise velocity remains positive and overshoots near the jet centre. In both cases, flow visualisations show that the vortex core of the jets is depleted of seeding particles. By using time-averaged distributions of the streamwise and tangential velocities measured at the nozzle outlet, the dynamics of the particles is simulated, by integrating their simplified equations of motion. The particles trajectory thus computed agrees well with that observed in the flow visualisations. Although the turbulence intensity is substantially different in the core of the two jets, its effect on the seeding concentration is localised near the edge of the core.  相似文献   

7.
A water-air impinging jets atomizer is investigated in this study, which consists of flow visualization using high speed photography and mean droplet size and velocity distribution measurements of the spray using Phase Doppler Anemometry (PDA). Topological structures and break up details of the generated spray in the far and near fields are presented with and without air jet and for an impinging angle of 90°. Spray angle increases with the water jet velocity, air flow rate and impinging angle. PDA results indicate that droplet size is smallest in the spray center, with minimum value of Sauter mean diameter (SMD) of 50 µm at the air flow rate of Qm = 13.50 g/min. SMD of droplets increases towards the spray outer region gradually to about 120 µm. The mean droplet velocity component W along the air-jet axis is highest in the spray center and decreases gradually with increasing distance from the spray center. SMD normalized by the air nozzle diameter is found firstly to decrease with gas-to-liquid mass ratio (GLR) and air-to-liquid momentum ratio (ALMR) and then remain almost constant. Its increasing with aerodynamic Weber number indicates an exponential variation. The study sheds light on the performance of water-air impinging jets atomizers providing useful information for future CFD simulation works.  相似文献   

8.
A computational fluid dynamics (CFD) model is used to investigate the hydrodynamics of a gas–solid fluidized bed with two vertical jets. Sand particles with a density of 2660 kg/m3 and a diameter of 5.0 × 10?4 m are employed as the solid phase. Numerical computation is carried out in a 0.57 m × 1.00 m two-dimensional bed using a commercial CFD code, CFX 4.4, together with user-defined Fortran subroutines. The applicability of the CFD model is validated by predicting the bed pressure drop in a bubbling fluidized bed, and the jet detachment time and equivalent bubble diameter in a fluidized bed with a single jet. Subsequently, the model is used to explore the hydrodynamics of two vertical jets in a fluidized bed. The computational results reveal three flow patterns, isolated, merged and transitional jets, depending on the nozzle separation distance and jet gas velocity and influencing significantly the solid circulation pattern. The jet penetration depth is found to increase with increasing jet gas velocity, and can be predicted reasonably well by the correlations of Hong et al. (2003) for isolated jets and of Yang and Keairns (1979) for interacting jets.  相似文献   

9.
Fluidized bed agglomeration is an important and challenging problem for thermal cracking in fluid cokers. A low coker temperature can be problematic because the bitumen is injected into the fluidized bed with a different viscosity, resulting in formation of agglomerates of varying sizes, which slows the cracking reactions. In the present study, the bed material agglomeration process during nozzle injection of multiviscosity liquid was investigated in a fluidized bed operated at different mass ratios of the atomization gas to the liquid jets (GLR = 1%–3.5%) and gas velocities (3.9Umf and 5.9Umf) based on a conductance method using a water–sand system to simulate the hot bitumen–coke system at room temperature. During the tests of liquid-jet dispersion throughout the bed, different agglomeration stages are observed at both gas velocities. The critical amount of tert-butanol in the liquid jets that could lead to severe agglomeration of the bed materials (poor fluidization) at GLR = 1% is about 10 wt% at the low fluidizing gas velocity (3.9Umf) and 18 wt% at the high gas velocity (5.9Umf). This study provides a new approach for on-line monitoring of bed agglomeration during liquid injection to guarantee perfect contact between the atomized liquid and the bed particles.  相似文献   

10.
The paper reports on particle image velocimetry (PIV) measurements in turbulent slot jets bounded by two solid walls with the separation distance smaller than the jet width (5–40%). In the far-field such jets are known to manifest features of quasi-two dimensional, two component turbulence. Stereoscopic and tomographic PIV systems were used to analyse local flows. Proper orthogonal decomposition (POD) was applied to extract coherent modes of the velocity fluctuations. The measurements were performed both in the initial region close to the nozzle exit and in the far fields of the developed turbulent slot jets for Re  10,000. A POD analysis in the initial region indicates a correlation between quasi-2D vortices rolled-up in the shear layer and local flows in cross-stream planes. While the near-field turbulence shows full 3D features, the wall-normal velocity fluctuations day out gradually due to strong wall-damping resulting in an almost two-component turbulence. On the other hand, the longitudinal vortex rolls take over to act as the main agents in wall-normal and spanwise mixing and momentum transfer. The quantitative analysis indicates that the jet meandering amplitude was aperiodically modulated when arrangement of the large-scale quasi-2D vortices changed between asymmetric and symmetric pattern relatively to the jet axis. The paper shows that the dynamics of turbulent slot jets are more complex than those of 2D, plane and rectangular 3D jets. In particular, the detected secondary longitudinal vortex filaments and meandering modulation is expected to be important for turbulent transport and mixing in slot jets. This issue requires further investigations.  相似文献   

11.
The qualities of a DES (Detached Eddy Simulation) and a PANS (Partially-Averaged Navier–Stokes) hybrid RANS/LES model, both based on the kω RANS turbulence model of Wilcox (2008, “Formulation of the kω turbulence model revisited” AIAA J., 46: 2823–2838), are analysed for simulation of plane impinging jets at a high nozzle-plate distance (H/B = 10, Re = 13,500; H is nozzle-plate distance, B is slot width; Reynolds number based on slot width and maximum velocity at nozzle exit) and a low nozzle-plate distance (H/B = 4, Re = 20,000). The mean velocity field, fluctuating velocity components, Reynolds stresses and skin friction at the impingement plate are compared with experimental data and LES (Large Eddy Simulation) results. The kω DES model is a double substitution type, following Davidson and Peng (2003, “Hybrid LES–RANS modelling: a one-equation SGS model combined with a kω model for predicting recirculating flows” Int. J. Numer. Meth. Fluids, 43: 1003–1018). This means that the turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the eddy viscosity formula. The kω PANS model is derived following Girimaji (2006, “Partially-Averaged Navier–Stokes model for turbulence: a Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation bridging method” J. Appl. Mech., 73: 413–421). The turbulent length scale in the PANS model is constructed from the total turbulent kinetic energy and the sub-filter dissipation rate. Both hybrid models change between RANS (Reynolds-Averaged Navier–Stokes) and LES based on the cube root of the cell volume. The hybrid techniques, in contrast to RANS, are able to reproduce the turbulent flow dynamics in the shear layers of the impacting jet. The change from RANS to LES is much slower however for the PANS model than for the DES model on fine enough grids. This delays the break-up process of the vortices generated in the shear layers with as a consequence that the DES model produces better results than the PANS model.  相似文献   

12.
Proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) were used to extract the coherent structures in turbulent cavity flows. The spatiotemporal representation of the modes was achieved by performing the circular convolution of a change of basis on the data sequence, wherein the transformation function was extracted from the POD or DMD. The spatiotemporal representation of the modes provided significant insight into the evolutionary behavior of the structures. Self-sustained oscillations arise in turbulent cavity flows due to unsteady separation at the leading edge. The turbulent cavity flow at ReD = 12,000 and a length to depth ratio L/D = 2 was analyzed. The dynamic modes extracted from the data clarified the presence of self-sustained oscillations. The spatiotemporal representation of the POD and DMD modes that caused self-sustained oscillations revealed the prevalent dynamics and evolutionary behavior of the coherent structures from their formation at the leading edge to their impingement at the trailing edge. A local minimum in the mode amplitude representing the energy contributions to the flow was observed upon the impingement of coherent structure at the trailing edge. The modal energy associated with the periodic formation of organized coherent structures followed by their dissipation upon impingement revealed the oscillatory behavior over time.  相似文献   

13.
The process of ductile plate perforation by sharp-nosed rigid projectiles is further examined in this work through 2D numerical simulations. We highlight various features concerning the effective resisting stress (σr) which a finite thickness plate, with a flow stress of Yt, exerts on the projectile during perforation. In particular, we show that the normalized resisting stress (σr/Yt) can be represented as a unique function of the normalized thickness of the plate (H/D, where H is plate thickness and D is projectile diameter), for a large range of normalized thicknesses. Our simulations for very thin target plates show that the penetration process is achieved through the well-known dishing mechanism, where the target material is pushed forward by the projectile’s nose. An important observation, which emerges from our simulations, is that the transition between the dishing and the hole enlargement mechanisms takes place at a normalized thickness of about H/D = 1/3. We also find that the normalized resistive stress for intermediate plate thicknesses, 1/3 < H/D < 1.0, is relatively constant at a value of σr/Yt = 2.0. This range of thicknesses conforms to a state of quasi plane stress in the plates. For thicker plates (H/D > 1) the σr/Yt ratio increases monotonically to values which represent the resistance to penetration of semi-infinite targets, where the stress state is characterized by plane strain conditions. Using a simple model, which is based on energy conservation, we can predict the values of the ballistic limit velocities for many projectile/target combinations, provided the perforation is done through the ductile hole enlargement mechanism. Good agreement is demonstrated between predictions from our model and experimental data from different sources, strongly enhancing the confidence in both the validity and usefulness of our model.  相似文献   

14.
Delineation of mini- and micro-scale channels with respect to two-phase flow has been the subject of many research papers. There is no consensus on when the small channel can be characterized as a mini-channel or micro-channel. The idea proposed by this paper is to use the normalized bubble nose radius, liquid film thickness top over bottom ratio, and bubble shape contour, which are found under normal gravity conditions in slug flow through a horizontal adiabatic channel, as the delineation criteria. The input parameters are bubble nose radius and bubble nose velocity as the characteristic length scale and characteristic velocity scale respectively. 3D numerical simulation with ANSYS FLUENT was used to obtain the necessary data. Following CFD practice, a mesh independence study and a numerical model validation against published experimental data were both conducted. Analysis of the numerical simulation results showed that channels with D  100 μm can be characterized as a micro-system, while channels with D  400 μm belong to mini-systems. The region 200 μm  D  300 μm represents a transition from the micro-scale to mini-scale.  相似文献   

15.
Velocity profiles and wall shear stress values in the wall jet region of planar underexpanded impinging jets are parameterized based on nozzle parameters (stand-off height, jet hydraulic diameter, and nozzle pressure ratio). Computational fluid dynamics is used to calculate the velocity fields of impinging jets with height-to-diameter ratios in the range of 15–30 and nozzle pressure ratio in the range of 1.2–3.0. The wall jet has an incomplete self-similar profile with a typical triple-layer structure as in traditional wall jets. The effects of compressibility are found to be insignificant for wall jets with Ma < 0.8. Wall jet analysis yielded power-law relationships with source dependent coefficients describing maximum velocity, friction velocity, and wall distances for maximum and half-maximum velocities. Source dependency is determined using the conjugate gradient method. These power-law relationships can be used for mapping wall shear stress as a function of nozzle parameters.  相似文献   

16.
Flow control using zero-net-mass-flow jets in an S-shaped diffusing duct was investigated. Experiments were conducted in a channel flow facility at a Reynolds number, Re = 4.1 × 104 with particle image velocimetry measurements in the symmetry plane of the duct. In the natural configuration, separation of the boundary layer occurs in a region of the duct with an high degree of curvature. A stability analysis of the wall normal base flow at the location of the applied control is presented and estimates the most effective frequency of the actuator. Time-averaged velocity fields show total reattachment of the boundary layer using active flow control.  相似文献   

17.
A control optimization technique using the continuous adjoint of the compressible Navier–Stokes equations is implemented for aeroacoustic optimization of plane jet flows. The purpose of the adjoint equations is to provide sensitivity information, which is afterwards used in a gradient-based minimization of a prescribed cost functional, designed to describe the far-field sound pressure level (SPL). The objective of the present paper is to demonstrate the ability to reduce the sound in the near far-field of plane jets. Furthermore, as the continuous adjoint approach can become inaccurate, due to inconsistencies between the continuous and the discretized system, the accuracy of the continuous adjoint approach is investigated. The considered cases exhibit a nozzle exit Reynolds number of Rejet = ρujetD/μ = 2000 and a Mach number of Mjet = 0.9, performed using two-dimensional direct numerical simulation and three-dimensional large-eddy simulation, respectively. A comparison of the obtained gradient via adjoint and finite differences is presented and it is shown, that in order to obtain reliable gradient directions, the length of the optimization time needs to be restricted. Furthermore, a receding horizon optimization for the two-dimensional plane jet simulation is used to obtain a sound reduction over much longer time intervals. The influence of different formulations of the viscosity in the adjoint equations is finally investigated.  相似文献   

18.
The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, LU, which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, LCH, or by a constant turbulence on the centerline, with length LCT. The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has a length LCH which increases from LCH = H at Re = 35,300 to LCH = 45H at Re = 2200. The PIV measurements on the centerline of the jet show that turbulence remains constant at the level of the exit for a length, LCT, which increases from LCT = H at Re = 35,300 to LCT = 45H at Re = 2200. The PIV measurements show that velocity remains constant at the exit level for a length, LU, which increases from LU = H at Re = 35,300 to LU = 6H at Re = 2200 and is called undisturbed region of flow. In turbulent flow the length LU is almost equal to the lengths of the regions of constant height, LCH, and constant turbulence, LCT. In laminar flow, Re = 2200, the length of the undisturbed region of flow, LU, is greater than the lengths of the regions of constant height and turbulence, LCT = LCH = 45H. The average PIV and HFA velocity measurements confirm that the length of potential core, LP, increases from LP = 45H at Re = 35,300 to LP = 78H at Re = 2200, and are compared to the previous experimental and theoretical results of the literature in the zone of mixing fluid and in the fully developed region with a good agreement.  相似文献   

19.
This paper presents and analyzes the behaviour of TRIP 1000 steel sheets subjected to low velocity perforation by conical projectiles. The relevance of this material resides in the potential transformation of retained austenite to martensite during impact loading. This process leads to an increase in strength and ductility of the material. However, this transformation takes place only under certain loading conditions strongly dependent on the initial temperature and deformation rate. In order to study the material behaviour under impact loading, perforation tests have been performed using a drop weight tower. Experiments were carried out at two different initial temperatures T0 = 213 K and T0 = 288 K, and within the range of impact velocities 2.5 m/s ? V0 ? 4.5 m/s. The experimental setup enabled the measuring of impact velocity, residual velocity, load-time history and failure mode. In addition, dry and lubricated contacts between the striker and the plate have been investigated. Finally, by using X-ray diffraction it has been shown that no martensitic transformation takes place during the perforation process. The causes involving the none-appearance of martensite are examined.  相似文献   

20.
In order to develop the interfacial area transport equation for the interfacial transfer terms in the two-fluid model, accurate data sets on axial development of local parameters such as void fraction, interfacial area concentration, interfacial gas velocity and Sauter mean diameter are indispensable to verify the modeled source and sink terms in the interfacial area transport equation. From this point of view, local measurements of both group 1 spherical/distorted bubbles and group 2 cap/slug bubbles in vertical upward air–water two-phase flow in a large diameter pipe with 200 mm in inner diameter and 26 m in height were performed at three axial locations of z/D = 41.5, 82.8 and 113 as well as 11 radial locations from r/R = 0–0.95 by using four-sensor probe method. Here, z, r, D and R are the axial distance from the inlet, radial distance from the pipe center, pipe diameter and pipe radius, respectively. The liquid flow rate and the void fraction ranged from 0.0505 m/s to 0.312 m/s and from 1.98% to 32.6%, respectively in the present experiment. The flow condition covered extensive region of bubbly flow, cap turbulent flow as well as their transition. The extensive analysis on the radial profiles of local flow parameters and their axial developments demonstrate the development of interfacial structures along the flow direction due to the bubble coalescence and breakup and the gas expansion. The significant decrease in void faction and interfacial area concentration and the increase in Sauter mean diameter and interfacial velocity were observed when the gradual flow regime transition occurred. Finally, the net change in the interfacial area concentration due to the bubble coalescence and breakup was quantitatively investigated in the present paper to reflect the true transfer mechanisms in observed two-phase flows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号