首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 449 毫秒
1.
A novel bending sensor based on a long period fiber grating (LPG) is presented. A LPG was glued into a V-shaped groove, which lies on the lower surface of a meniscus shaped beam. It is found that the transmission optical power of the LPG changed linearly with the variation of the bending of the beam. The bending applied on the beam can be measured by detecting the intensity variation of the LPG's resonant dip wavelength. Under a relative large bending measured range from 0 to 7.5 m?1, the sensitivity of 3.003 dB m?1 and curvature resolution of 0.001 m?1 have been achieved for the proposed bending sensor.  相似文献   

2.
We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from ?79.5 pm/°C to ?104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from ?0.097 nm/°C to ?0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.  相似文献   

3.
We propose a refractometric sensor based on micro/nanofiber Bragg grating (MNFBG). The refractive index (RI) sensing performance dependence on the fiber radius and Bragg grating period of the sensor, as well as the temperature cross-sensitive effect, is investigated theoretically. The simulation results demonstrate that 400 nm-radius MNFBG has a linear response to RI ranging from 1.3 to 1.39 with a sensitivity as high as 992.7 nm/RIU and half temperature cross-sensitivity of normal FBG. A maximum sensitivity of up to 1200 nm/RIU and an outstanding RI resolution of 8.3 × 10-6 can be achieved. MNFBG has high potential in various types of optical fiber sensor applications.  相似文献   

4.
A method for the simultaneous, independent measurement of temperature and force using a single in-fiber Bragg grating (FBG) sensors was proposed and demonstrated. The FBGs were partially metallized using a partial nickel coating method. A Bragg reflex peak was successfully divided into two reflex peaks during the partial nickel plating process. The metallized part of the FBG was soldered on a steel cantilever, and the non-metallized part hanged in air. Using a structure that is composed of the steel cantilever soldered with a dual-wavelength FBG, the temperature and pressure can be simultaneously measured and discriminated. The metallized part of the FBG is highly temperature-sensitive (about 26.1 pm/°C), and for the non-metallized part the original Bragg wavelength of the FBG remains unchanged. The force sensitivity of the metallized part which soldered on the cantilever remained at 82 pm/N from 30 to 90 °C.  相似文献   

5.
The novel multi-wavelength fiber ring laser based on a sampled chirped fiber Bragg grating with a single SOA or a hybrid gain medium is demonstrated, respectively. In case of a hybrid gain medium, the SMSR improvement of ~ 5 dB was obtained when compared with the system with a single SOA. The proposed fiber laser offers advantages such as simple structure, low loss, multi-wavelength lasing lines with moderate output power.  相似文献   

6.
Optical pulses are generated from a coupled-cavity quantum-dot (QD) laser consisting of a short QD-waveguide Fabry–Perot (F–P) cavity and three long external fiber Bragg grating (FBG) cavities. When the laser is biased at low operation current, the feedback from the external cavities dominates and laser pulses have a 1.01 THz repetition rate, determined by the equal frequency difference of the three FBGs. We are thus able to decouple the repetition rate of a mode-locked laser from the cavity length. With much higher bias current, the QD F–P cavity dominates and the repetition rate is switched to 43.8 GHz, defined by the length of the F–P cavity.  相似文献   

7.
A fast adjustable gain equalization filter for dense wavelength division multiplexing (DWDM) system is reported. The method is based on a single long period fiber grating (LPG) which is excited by means of flexural acoustic waves. The equalization of a typical erbium doped fiber amplifier (EDFA) gain spectrum with a gain flatness of <0.3 dB over a 32 nm bandwidth is demonstrated. The filter adjustment is obtained by choosing different acoustic loads applied to the acousto-optic modulator, which presents a switching time of ~17 μs. A maximum power penalty of 0.84 dB, relatively to the back-to-back signal, was achieved.  相似文献   

8.
A dual-wavelength fiber laser with a narrow-linewidth, based on a P-F fiber filter has been proposed. Polarization-maintaining fiber Bragg grating (PM-FBG) and a F-P fiber filter are introduced based on the traditional fiber laser. PM-FBG is used as the wavelength selection device. The fiber F-P filter consists of two optical couplers and a section of un-pumped erbium-doped fiber (EDF). Due to the delay of cavity and the loss generated by the EDF, the filter has comb spectral response. The incorporation of the fiber F-P filter leads to the suppression of undesirable modes. At the room temperature, under 980 nm LD pumped, the maximum output of the two wavelengths is respectively ?2.259 dBm and 0.568 dBm, with the 3-dB bandwidth separately 0.1 nm and 0.14 nm, realizing the narrow linewidth and dual-wavelength output.  相似文献   

9.
A Ytterbium-doped linearly-polarized fiber laser is constructed with a polarization maintaining fiber Sagnac loop mirror. The fiber loop mirror made of polarization maintaining fiber coupler has a polarization dependent reflectivity, which provides the necessary polarization discrimination between the slow and fast axes. With a fiber Bragg grating written in normal polarization maintaining fiber as an output coupler, laser output of up to 5.6 W at 1070 nm is generated with a polarization extinction ratio of > 20 dB and an overall efficiency of 55%. The broadband polarization dependent reflection of the fiber loop mirror offers advantages of easy spectral tuning and simple linearly-polarized laser generation.  相似文献   

10.
This study presents an external cavity diode laser (ECDL) system, utilizing a volume holographic grating (VHG) and a microfabricated silicon flexure as the VHG holder. The laser design is aimed for easy assembly, controllability, and better stability of the laser cavity. The laser frequency was stabilized to a D2 transition of rubidium at 780.247 nm, with a mode-hop-free tuning range of 16 GHz and 9.6 GHz with and without feed-forward on the diode injection current. The measured linewidth was 850 kHz in 500 s, qualified for laser cooling experiments.  相似文献   

11.
A Regenerated Fibre Bragg Grating (RFBG), with repeatable high temperature response between 400 °C–1200 °C, has been demonstrated using a hydrogen-loaded, highly germanium-doped, photosensitive fibre. A wavelength shifts of as much as 20 nm is attained during temperature calibration up to 1300 °C. A large temperature response of 17 pm/°C is obtained from the RFBG, with very good repeatability.  相似文献   

12.
Yage Zhan  Jun Luo  Hua Wu  Muhuo Yu 《Optik》2012,123(7):637-640
An all-fiber high resolution optical fiber grating concentration sensor has been studied theoretically and experimentally. A long period grating is used as the sensor head and a wavelength matched fiber Bragg grating is used as an interrogator to convert wavelength into intensity encoded information for interrogation. A concentration resolution of 0.104 g/L for NaCl solution is realized in experiment. The all-fiber sensor system, with the sensor head and the interrogator being all optical fiber components, is suitable for far-distance monitoring. The sensor system is with multifunction and can be used for temperature monitoring. A temperature resolution of 0.013 °C has realized in experiment.  相似文献   

13.
A novel curvature sensor based on optical fiber Mach–Zehnder interferometer (MZI) is demonstrated. It consists of two spherical-shape structures and a long-period grating (LPG) in between. The experimental results show that the shift of the dip wavelength is almost linearly proportional to the change of curvature, and the curvature sensitivity are −22.144 nm/m−1 in the measurement range of 5.33–6.93 m−1, −28.225 nm/m−1 in the range of 6.93–8.43 m and −15.68 nm/m−1 in the range of 8.43–9.43 m−1, respectively. And the maximum curvature error caused by temperature is only −0.003 m−1/°C. The sensor exhibits the advantages of all-fiber structure, high mechanical strength, high curvature sensitivity and large measurement scales.  相似文献   

14.
A high performance multiplexed fiber-optic sensor consisted of diaphragm-based extrinsic Fabry–Perot interferometer (DEFPI) and fiber Bragg grating (FBG) is proposed. The novel structure DEFPI fabricated with laser heating fusion technique possesses high sensitivity with 5.35 nm/kPa (36.89 nm/psi) and exhibits ultra-low temperature dependence with 0.015 nm/°C. But the ultra-low temperature dependence still results in small pressure measurement error of the DEFPI (0.0028 kPa/°C). The designed stainless epoxy-free packaging structure guarantees the FBG to be only sensitive to temperature. The temperature information is created to calibrate the DEFPI's pressure measurement error induced by the temperature dependence, realizing effectively temperature self-compensation of the multiplexed sensor. The sensitivity of the FBG is 10.5 pm/°C. In addition, the multiplexed sensor is also very easy to realize the pressure and the temperature high-precise high-sensitive simultaneous measurement at single point in many harsh environmental areas.  相似文献   

15.
A compact short-cavity fiber laser configured with Er3+/Yb3+ highly co-doped phosphate glass fiber with stable linear polarization and single frequency output is proposed and investigated experimentally. The fiber laser is composed of a high-reflectivity fiber Bragg grating (HRFBG) and a polarization-maintaining fiber Bragg grating (PMFBG) with the matched wavelengths at 1540.3 nm, which aims at one of the center wavelengths of the atmospheric transmission windows and may be used as the local oscillator (LO) of the coherent Doppler lidar (CDL). The output power of the laser reaches more than 114-mW, the signal-to-noise ratio is larger than 70 dB and the laser linewidth is about 4.1-kHz. Moreover, the linear polarization with 40.5 dB extinction ratio, the power fluctuation of less than ± 0.25% and the frequency fluctuation of less than ± 80 MHz are also obtained. Compared with the DFB fiber laser, the proposed fiber laser is more suitable for the CDL applications.  相似文献   

16.
In this work, we experimentally demonstrate an efficient cw second harmonic generation (SHG) at 780 nm wavelength with a first-order type-I phase matching periodically poled KTP (PPKTP) crystal in a ring cavity, the wavelength corresponds to the D2 line of Rb atom transition. The fundamental laser used is a grating-stabilized external cavity diode laser and its frequency is precisely locked to Rb atom transition frequency using the saturated absorption technique. About maximal 6.9 mW UV radiation of 390 nm with a net conversion of 9.5% at an input mode-matched power of 73 mW is generated with one crystal, and about maximal 8.8 mW with the net conversion of 12% is obtained with another crystal; the powers in stable operation are about 1.7 mW and 3.4 mW, respectively. This is, to our best knowledge, the first SHG experiment at 780 nm wavelength with the PPKTP in a ring cavity.  相似文献   

17.
Songbai Li  Jiagui Wu  Zhengmao Wu 《Optik》2012,123(9):804-807
According to equivalent external cavity approximation model, after taking into account the joint contribution of semiconductor laser, external cavity and fiber grating (FG) to the phase condition, the mode distribution of the fiber grating external cavity semiconductor laser (FGESL) can be determined. As a result, the effect of the FG external cavity length (L) on the side mode suppression ratio (SMSR) of the FGESL is investigated theoretically. The results show that with the injected current and the coupling efficiency increase of the SMSR has taken on rise at all. For strong feedback (R2 = 10?4), the SMSR become more flattened with more than 40 dB, but, for weak feedback condition, The SMSR have lesser than 35 dB by an oscillation during rising course. Under the condition of short external cavity, the SMSR is in deep relation to the external cavity length, but the SMSR of longer external cavity is smaller than the SMSR of shorter external cavity on the whole and for 8–11 mm of the external cavity length, the SMSR of the FGESL has better (SMSR > 40.8 dB), and the SMSR become more flattened.  相似文献   

18.
A high-power Er,Yb double-clad ribbon fiber laser pumped by a 9-diode-bar pump module is reported. The laser yielded 102 W of continuous-wave output at 1566 nm for a launched pump power of 244 W, corresponding to a slope efficiency of ~ 44% with respect to launched pump power. Tunable operation was achieved using a simple external feedback cavity with a diffraction grating and the operating wavelength could be tuned from 1533 nm to 1567 nm. Temperature distribution in the ribbon fiber geometry and prospects of power scaling will be discussed.  相似文献   

19.
Ray matrix approach with appropriate coordinate systems has been proposed in this paper. It is employed to analyze the optical-axis perturbation in nonplanar ring resonators. The sensitivities of optical-axis decentration (SD) and optical-axis tilt (ST) in nonplanar resonators with 90° and 270° image rotation are discussed in detail in the region of 0 < K < 8, where K is the ratio of the total cavity length to the radius of the curvature mirrors. There are both four singular points in the whole region of 0 < K < 8. On the left of the first singularity, it is found that the longer the mirror radius, the less the optical-axis decentration sensitivity. This is opposite the behavior of planar ring resonators, but the behaviors of optical-axis tilt sensitivity in planar and nonplanar ring resonators are similar. It is worth to note that SD and ST in the nonplanar resonator with certain parameters have the similar singularities. The analysis in this paper is important for the cavity design and alignment of nonplanar ring resonators.  相似文献   

20.
A polarization insensitive hollow optical waveguide is proposed. The propagation characteristics of orthogonal polarizations in the hollow waveguide are effectively controlled in simulation to provide polarization insensitivity by tailoring the parameters associated with the two mirrors—a high-index contrast grating (HCG) mirror and a distributed Bragg reflecting (DBR) mirror, on either side of an air-core. The polarization insensitivity is evidenced by a low polarization dependence loss of 1.36 dB/cm and a low modal birefringence of 1.01 × 10? 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号