首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We have observed a softening of phonons and a structural phase transition in a superconducting Ba0.59K0.41BiO3 (Tc = 31 K) single crystal using elastic and inelastic neutron scattering measurements. The soft phonon occurs for the [1 1 1] transverse acoustic mode at the zone boundary. The phonon energies in this vicinity are found to continuously decrease with decreasing temperature from above room temperature. This softening stops at a temperature close to Ts, where a structural phase transition from cubic to tetragonal symmetry occurs. The overall results are consistent with previous data that reported phonon softening and a (0.5, 0.5, 0.5) type superstructure in several Ba1?xKxBiO3 systems. However, we also find weaker (0.5, 0.5, 0) type superstructure peaks that reveal an additional component to the modulation. No significant change related to the superconductivity was observed for these soft phonon energies or linewidths.  相似文献   

2.
《Solid State Ionics》2006,177(3-4):211-215
Nuclear-density distribution of ceria (CeO2, space group: Fmm) has been investigated between 40 and 1497 °C by the maximum-entropy method (MEM) and MEM-based pattern fitting combined with the Rietveld method using neutron powder diffraction data. The refined unit-cell and atomic displacement parameters increased with an increase of temperature. The results of the MEM analysis reveal that the oxide ions have a positional disorder spreading over a wide area and shift to the <111> directions from the ideal position 8c 1 / 4,1 / 4,1 / 4 of the fluorite-type structure. The disorder of the oxide ions is more significant at higher temperatures and suggests the diffusion paths in the <111> and <100> directions.  相似文献   

3.
The inelastic neutron scattering experiment on superionic glass system AgI-AgPO3 have been performed in the energy and momentum transfer range from ? 5 to 15 meV and 0 to 8 Å? 1, respectively by using a time of flight MARI instrument at Rutherford Appleton Laboratory, ISIS, UK. The E-dependence of the inelastic data show an excess intensity at low energy around 3 meV, the so-called Boson peak, which increased with the dopant salt. The Q-dependence of the elastic scattering reveals a prepeak at anomalously low Q value around 0.8 Å? 1, which is not observed in the undoped AgPO3 glass. The Q-dependence in the energy region from 1 to 3 meV shows clearly an excess intensity at Q ~ 2.2 Å ? 1compared with the undoped AgPO3. All these features correlate with the increasing mobility of Ag+ ions due to the expansion of the network structure caused by salt doping, which leads to the increase of ionic conductivity. Similar results have also been observed in the corresponding superionic glass system AgI-Ag2S-AgPO3 that was observed by both MARI and NEAT instrument at HMI, Berlin. The results show a universal dynamic behavior in silver phosphate glasses.  相似文献   

4.
Neutron diffraction studies have been performed in the temperature range 1050 K⩾T⩾10 K on the spinel system ZnxMg0.75−xCu0.25Fe2O4 (x=0.0, 0.25, 0.5 and 0.75) prepared in the ceramic sintering method. Cation distributions in all the four compositions have been determined from the analysis of neutron data. A perturbed ferrimagnetic order has been observed in the compositions with x values lying in the low to intermediate range, where apparently, randomly canted spins and small fluctuating clusters are superimposed on the ferrimagnetic long range order. A complete breakdown of the ferrimagnetic stability occurs at x=0.75 as indicated by the absence of magnetic long range order. A huge diffuse scattering signal appears at the low-Q region broadening the (1 1 1) diffraction line in the low temperature neutron patterns of this composition indicating the formation of large magnetic clusters. A cluster spin glass state is suggestive for this composition.  相似文献   

5.
Inelastic neutron scattering was used to search for an influence of superconductivity on the phonons in optimally doped and in slightly overdoped Ba(Fe1?xCox)2As2, x = 0.06 and x = 0.10. The study focused on phonons with energies close to the superconducting gap energy 2Δ because it is well known that such phonons will respond most strongly to the opening of the gap. We were able to obtain high quality data but nevertheless, we could not detect any influence of superconductivity on the phonons, neither on the linewidths nor on the frequencies. Our results imply that any coupling of low energy phonons to the electrons has to be very small, much smaller than observed in conventional superconductors with a high Tc. Our results are in line with the low coupling strength predicted by density functional theory for the investigated phonon branches.  相似文献   

6.
We have measured the magnetic susceptibility, resistivity, magnetoresistivity and Hall effect of nonstoichiometric cuprous selenide between 5 and 350 K. Our results show that below 170 K Cu2−xSe is a mixture of diamagnetic Cu1.995Se and paramagnetic Cu3Se2. The phase diagram of the Cu–Se system, in which 170 K represents the eutectic isotherm, governs the relative content of the two phases. For the Cu3Se2 phase a transition to an antiferromagnetic state is observed at about 50 K, with the corresponding Weiss temperature Θ=120 K. On heating above 170 K Cu2−xSe becomes completely diamagnetic, but the transformation is slow and strongly time dependent. The complicated magnetic behaviour is ascribed to a broad temperature hysteresis of the process.  相似文献   

7.
《Solid State Ionics》2006,177(26-32):2605-2609
The correlation between the ionic conductivity and the nano-crystallization processes of (CuI)x–(Cu2MoO4)1−x superionic conducting glasses has been systematically investigated by X-ray diffraction and high-resolution transmission electron microscopy (HREM). In x = 0.52, CuI crystal precipitates as a primary phase. On the other hand, in x = 0.40, crystallization from homogeneous glass into CuI crystal and other phase has been observed. Nano-crystallization processes depend on CuI content. The difference of the nano-crystallization processes influences the electrical conductivity.  相似文献   

8.
The temperature–dependent electrical resistivity ρ(T) in metallic and semiconducting phase of ZnO nanostructures is theoretically analysed. ρ(T) shows semiconducting phase in low temperature regime (140 K<T<180 K), shows an absolute minimum near 180 K and increases linearly with T at high temperatures (200 K<T<300 K). The resistivity in metallic phase is estimated within the framework of electron–phonon and electron–electron scattering mechanism. The contributions to the resistivity by inherent acoustic phonons (ρac) as well as high frequency optical phonons (ρop) were estimated using Bloch–Gruneisen (BG) model of resistivity. The electron–electron contributions ρe?e=BT2 in addition with electron–phonon scattering is also estimated for complete understanding of resistivity in metallic phase. Estimated contribution to resistivity by considering both phonons, i.e., ωac and ωop and the zero limited resistivity are added with electron–electron interaction ρe–e to obtain the total resistivity. Resistivity in Semiconducting phase is discussed with small polaron conduction (SPC) model. The SPC model consistently retraces the low temperature resistivity behaviour (140 K<T<180 K). Finally the theoretically calculated resistivity is compared with experimental data which appears favourable with the present analysis in wide temperature range.  相似文献   

9.
We report on studies of the structure and dynamics of the (0 0 1) surface of single crystal LiCu2O2, investigated by He beam scattering at room temperature, and with lattice-dynamical models. The best fit surface corrugation to measured diffraction patterns shows that the surface termination is exclusively a Li1+Cu2+O2? plane. Lattice dynamics fits to inelastic He scattering spectra reveal the presence of two low-lying surface phonon modes, identified with the motion of Cu2+, Li1+ surface ions normal to the surface.  相似文献   

10.
Equal amount Pr and Ca double-doping Y1?2xPrxCaxBa2Cu3O7?δ with 0 ? x ? 0.14 have been investigated by X-ray diffraction, resistivity, and X-ray photoemission spectroscopy (XPS). The deviation of the linearly decreasing of Tc vs. x curve was observed when x < 0.10. The resistivity and the temperature coefficient of resistivity also exhibit abnormal behaviors around x = 0.10. It is revealed that the conductivity behavior of Y1?2xPrxCaxBa2Cu3O7?δ with low Pr content (x < 0.10) is different from that of the relative high Pr content (x > 0.10), which suggests a change of Pr valence with the Pr content. XPS measurement shows that the relative amount of Pr3+ and Pr4+ is closely related to the total Pr content x. The valence of Pr is close to +3 when x < 0.10 and increases towards +4 when x > 0.10, which implies a different mechanism for depression of superconductivity of Pr content x < 0.10 from that of Pr content x > 0.10 in Pr doping Y-123.  相似文献   

11.
During selective etching (dealloying) surface-sensitive X-ray diffraction employing Synchrotron light has been used to in-situ monitor the potential-controlled formation of Au-rich films on the surface of Cu3Au (111) in iodide-containing electrolytes. Similar to the case in pure sulfuric acid we observed a sequence of structural transformations starting from a well-prepared pristine surface to a porous film consisting of substrate-oriented Au ligaments. Also stacking-reversed ultrathin Au-rich films and Au islands form as intermediate steps but no passive-like behavior was observed in iodide-containing electrolytes, i.e. the surface quickly developed Au ligaments after reaching the Cu dissolution potential. At low overpotentials comparatively coarse Au islands point to a higher mobility of Au/electrolyte interfaces in iodide-containing solutions. At higher overpotentials and also with higher iodide concentrations an epitaxial Cu-iodide precipitate film showed an orientation relation of CuI (111) || CuAu (111) and two azimuthal domains of < ? 2, 2, 0 > || < ? 2, 2, 0 > and < ? 2, 2, 0 > || < 2, ? 2, 0>. This partially dissolution-inhibiting bulk CuI layer is observed to produce a bimodal pore size instead of usually obtained homogeneous porosity. The X-ray data and supporting ex-situ AFM and SEM images show marked differences in the morphology and connectivity of the forming nanoporous Au layer. Precipitation layers are thus suggested to provide means for controlling the nanoporosity for applications of dealloyed films and surfaces.  相似文献   

12.
This paper presents results of investigations of carrier scattering mechanisms in n-Cd1xMgxSe mixed crystals with magnesium content varying from x = 0 to x = 0.33. Experimental results obtained by means of the Fourier Transform Infrared Spectroscopy (FT-IR) and Hall measurements are discussed in the frame of the Drude and the quantum theories. The character of the wavelength dependence of the optical absorption coefficient in investigated crystals was found to be of the type ∼λp, where 2 < p < 3.5. The p = 2 is expected from the Drude theory and the relaxation time approximation. The obtained experimental values of p parameter suggest that the optical phonon and impurity scattering mechanisms are dominating scattering mechanisms in these crystals. The calculated carrier concentration from optical absorption spectrum for a n-CdSe crystal is in a good agreement with this obtained from Hall measurement.  相似文献   

13.
M. Kobayashi 《Solid State Ionics》2009,180(6-8):451-456
Noble-metal chalcogenides are known as both electronic and ionic conductors. Physics in superionic conductors is investigated on the basis of the idea of elementary excitations. First, the semiconducting properties of noble-metal chalcogenides are investigated by preparing the full Hamiltonian for conduction electrons and phonons. The influence of electron interactions on the longitudinal acoustic wave frequencies and the matrix element for the electron–phonon interaction are investigated. Three cases of ω >> F, ω < F and ω = 0 are investigated for polar semiconductors like noble-metal chalcogenides. Next, the structure factors, and the f-sum rule of conductivity are investigated in silver chalcogenides by making use of a continuum model. The structure factors See, SAe and SBe with which electrons are connected are expressed symmetrically in terms of the structure factors SAA, SBB and SAB of ions in the long-wavelength limit using the fluctuation–dissipation theorem and the Kramers–Kronig relation. The obtained conductivity satisfies the f-sum rule.  相似文献   

14.
《Solid State Communications》2002,121(6-7):333-338
We report coherent inelastic neutron scattering measurements of the phonon dispersion relations and lattice dynamics shell model calculations of several microscopic and macroscopic properties of andalusite, Al2SiO5. Andalusite has an orthorhombic structure with 32 atoms/unit cell. The inelastic neutron scattering measurements (up to energy transfers of 45 meV) were carried out using the triple axis spectrometer at Dhruva reactor, India using a single crystal of andalusite and the phonon dispersion relations along the [100] direction have been measured. The shell model calculations have been used to compute the crystal structure, elastic constants, phonon frequencies, dispersion relations, density of states and the specific heat. The calculated results are in good agreement with available experimental data. The computed one-phonon neutron scattering structure factors based on the shell model have been very useful in the planning and analysis of the inelastic neutron scattering experiments.  相似文献   

15.
The influence of adsorbed S on surface segregation in CuxPd1 ? x alloys (S/CuxPd1 ? x) was characterized over a wide range of bulk alloy compositions (x = 0.05 to 0.95) using high-throughput Composition Spread Alloy Film (CSAF) sample libraries. Top-surface and near-surface compositions of the CSAFs were measured as functions of bulk Cu composition, x, and temperature using spatially resolved low energy ion scattering spectroscopy (LEISS) and X-ray photoemission spectroscopy (XPS). Preferential segregation of Cu to the top-surface of the S/CuxPd1 ? x CSAF was observed at all bulk compositions, x, but the extent of Cu segregation to the S/CuxPd1 ? x surface was lower than the Cu segregation to the surface of a clean CuxPd1 ? x CSAF, clear evidence of an S-induced “segregation reversal.” The Langmuir–McLean formulation of the Gibbs isotherm was used to estimate the enthalpy and entropy of Cu segregation to the top-surface, ΔHseg(x) and ΔSseg(x), at saturation sulfur coverages. While Cu segregation to the top-surface of the clean CuxPd1 ? x is exothermic (ΔHseg < 0) for all bulk Cu compositions, it is endothermic (ΔHseg > 0) for S/CuxPd1 ? x. Segregation to the S/CuxPd1 ? x surface is driven by entropy. Changes in segregation patterns that occur upon adsorption of S onto CuxPd1 ? x appear to be related to formation of energetically favored PdS bonds at the surface, which counterbalance the enthalpic driving forces for Cu segregation to the clean surface.  相似文献   

16.
The electronic thermal conductivity (ETC), κe, of suspended graphene (SG) is studied for 15<T<400 K, following the Boltzmann transport formalism. The electrons are considered to be scattered from defects along with the intrinsic in-plane acoustic phonons, out-of-plane flexural phonons (FPs) and optical phonons. The ETC is evaluated by computing the first-order perturbation distribution function by directly solving the linearized Boltzmann equation by an iterative method. Numerical calculations of the temperature and concentration dependences of κe show the dominance of charged impurity scattering at lower temperatures (T<75 K) and of FPs at higher temperatures. The results are compared with the commonly used low-temperature and high-energy relaxation time approximations. Our calculations are in good agreement with recent κe data extracted for high-mobility SG samples. The validity of Wiedemann–Franz law is also discussed.  相似文献   

17.
A. Hofmann  C. Pettenkofer 《Surface science》2012,606(15-16):1180-1186
CuInSe2(112) films were grown on GaAs(111)A substrates by molecular beam epitaxy. The resulting surface stoichiometry was deduced by consideration of results from various surface analytic techniques. The obtainable Cu/In stoichiometry range in XPS was 0.4–1.2, where 1.2 marks the onset of Cu2 ? xSe phase segregation at the surface and 0.4 corresponds to the copper-depleted surface with ordered defect compound (ODC) composition. For the stoichiometric CuInSe2(112) surface, a c(4 × 2) reconstruction of the zinc blende surface periodicity is observed in the LEED pattern, with three rotational domains present on the flat GaAs(111) substrate. With the use of stepped (111) substrates, domain formation could be suppressed. By comparison of the LEED data and concentration depth profiles from angle-resolved XPS, two types of surface reconstructions could be distinguished. According to surface energy calculations in the literature, these correspond to surfaces stabilized by either CuIn or 2VCu defects. The surface of copper-poor CuIn3Se5 shows no reconstruction of the zinc blende order.  相似文献   

18.
It was known experimentally that type B orientation, which is rotated 180° about the [111] axis, dominated the heteroepitaxial growth of Ge(111) on a CaF2(111) substrate at an elevated temperature. We performed first principles calculations using density functional theory to determine the energetics of the Ge(111)/CaF2(111) interface and found that the type B orientation of the Ge film is most likely a result of a direct bonding between Ge atoms and Ca2+ at the CaF2 surface with the top F? layer depleted. Our theoretical prediction is supported by our X-ray diffraction experiments on {111} < 121> biaxially textured Ge/CaF2 samples.  相似文献   

19.
Cuprous oxide (Cu2O) nanocrystalline thin films were prepared on two types of substrates known as crystalline silicon and amorphous glass, by radio frequency reactive magnetron sputtering method. Scanning electron microscopy images confirmed that Cu2O particles covered the entire surface of both substrates with smoothing distribution. The root mean square surface roughness for the prepared Cu2O thin films on glass and Si (111) substrates is 4.16, and 3.36 nm, respectively. Meanwhile, X-ray diffraction results demonstrated that the two phases of Cu2O and CuO were produced on Si (111) and glass substrates. The optical bandgap of Cu2O thin films synthesised on glass substrate is 2.42 eV. Furthermore, the prepared Cu2O nanocrystalline thin films have showed low reflectance value in the visible spectrum. Metal-Semiconductor-Metal photodetector based Cu2O nanocrystalline thin films deposited onto Si (111) was fabricated using aluminium and platinum, with the current-voltage and photoresponse characteristic investigated under various applied bias voltages. The fabricated Metal-Semiconductor-Metal (M-S-M) photodetector had shown 126% sensitivity in the presence of 10 mW/cm2 of 490 nm light with 1.0 V bias, displaying 90 and 100 ms response and recovery times, respectively. These findings have demonstrated the suitability of M-S-M Cu2O photodetector as an affordable photosensor in the future.  相似文献   

20.
A sonochemical method for direct preparation of nanowires of SbS1?xSexI solid solution has been established. The SbS1?xSexI gel was synthesized using elemental Sb, S, Se and I in the presence of ethanol under ultrasonic irradiation (35 kHz, 2 W/cm2) at 50 °C for 2 h. The product was characterized by using techniques such as powder X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, energy dispersive X-ray analysis, selected area electron diffraction, and optical diffuse reflection spectroscopy. The SEM and HRTEM investigations exhibit that the as-prepared samples are made up of large quantity nanowires with lateral dimensions of about 10–50 nm and lengths reaching up to several micrometers and single-crystalline in nature. The increase of molar composition of Se affects linear decrease of the indirect forbidden optical energy gap as well as the distance between (121) planes of the SbS1?xSexI nanowires.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号