首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vortex structures and heat transfer enhancement mechanism of turbulent flow over a staggered array of dimples in a narrow channel have been investigated using Large Eddy Simulation (LES), Laser Doppler Velocimetry (LDV) and pressure measurements for Reynolds numbers ReH = 6521 and ReH = 13,042.The flow and temperature fields are calculated by LES using dynamic mixed model applied both for the velocity and temperature. Simulations have been validated with experimental data obtained for smooth and dimpled channels and empiric correlations. The flow structures determined by LES inside the dimple are chaotic and consist of small eddies with a broad range of scales where coherent structures are hardly to detect. Proper Orthogonal Decomposition (POD) method is applied on resolved LES fields of pressure and velocity to identify spatial–temporal structures hidden in the random fluctuations. For both Reynolds numbers it was found that the dimple package with a depth h to diameter D ratio of h/D = 0.26 provides the maximum thermo-hydraulic performance. The heat transfer rate could be enhanced up to 201% compared to a smooth channel.  相似文献   

2.
In this paper, fully developed laminar flow convective heat transfer and friction factor characteristics of Al2O3/water nanofluid flowing through a uniformly heated horizontal tube with and without wire coil inserts is presented. For this purpose, Al2O3 nanoparticles of 43 nm size were synthesized, characterized and dispersed in distilled water to form stable suspension containing 0.1% volume concentration of nanoparticles. The Nusselt number in the fully developed region were measured and found to increase by 12.24% at Re = 2275 for plain tube with nanofluid compared to distilled water. Two wire coil inserts made of stainless steel with pitch ratios 2 and 3 were used which increased the Nusselt numbers by 15.91% and 21.53% respectively at Re = 2275 with nanofluid compared to distilled water. The better heat transfer performance of nanofluid with wire coil insert is attributed to the effects of dispersion or back-mixing which flattens the temperature distribution and make the temperature gradient between the fluid and wall steeper. The measured pressure loss with the use of nanofluids is almost equal to that of the distilled water. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds/Peclet number, pitch ratio and volume concentration fits with the experimental data within ±15%.  相似文献   

3.
The present study investigated experimentally the heat transfer from a heat source simulating an electronic chip mounted on a printed circuit board placed downstream of a guide fence on the lower wall of the flow passage with two different aspect ratios (H/W = 0.3 and 1). The channel height to the heat source height ratios (H/B) are of 10 and 3. The effect of the guide fence height (b) and the spacing between the guide fence and the heat source (S) were investigated. The guide fence was orientated such that guide fence extension point was varied from the midpoint of the front face of the heat source to the endpoint of the side face at 5000 ? ReL ? 30,000. The results for the heat source without guide fence displayed noticeable difference when compared with the flow over smooth plate placed on the lower wall of the flow passage. An enhancement in the convective heat transfer coefficient up to 20% is obtained when decreasing the flow passage height to the heat source height ratio from 10 to 3. Also, higher Nusselt number is located at the front face and the vertical sides of the heat source compared with that of the top surface. Nusselt number increases with the increase in both Reynolds number and the guide fence height while the effect of spacing between the guide fence and the heat source depending on the guide fence height. Correlations for the average Nusselt number were obtained utilizing the present measurements within the investigated range of the different parameters.  相似文献   

4.
A computational study of heat transfer from rectangular cylinders is carried out. Rectangular cylinders are distinguished based on the ratio of the length of streamwise face to the height of the cross-stream face (side ratio, R). The simulations were performed to understand the heat transfer in a flow field comprising separation, reattachment, vortex shedding and stagnation. The Partially-Averaged Navier–Stokes (PANS) modeling approach is used to solve the turbulent flow physics associated and the wall resolve approach is used for the near wall treatment because of the flow separation involved. The simulations were performed using a finite volume based opensource software, OpenFOAM, at Reynolds number (Re) = 22,000 for rectangular cylinder at constant temperature kept in an air stream. Two critical side ratios were obtained, R = 0.62 and 3.0. At R = 0.62, the maximum value of the drag coefficient (Cd) = 2.681 was observed which gradually reduced by 54% at R = 4.0. The base pressure coefficient and global Nusselt number also attained the maximum value at R = 0.62 and from R = 2.5 to 3.0 a sharp discontinuous increase by 140% in the Strouhal number was observed. At R = 0.62, it was observed that the separated flow reattaches at the trailing edge after rolling over the side face and therefore increases the overall Nusselt number. The phase averaging was also performed to analyze the unsteady behavior of heat transfer.  相似文献   

5.
This paper documents the numerical investigation of the effects of non-uniform magnetic fields, i.e. magnetic-ribs, on a liquid–metal flowing through a two-dimensional channel. The magnetic ribs are physically represented by electric currents flowing underneath the channel walls. The Lorentz forces generated by the magnetic ribs alter the flow field and, as consequence, the convective heat transfer and wall shear stress. The dimensionless numbers characterizing a liquid–metal flow through a magnetic field are the Reynolds (Re) and the Stuart (N) numbers. The latter provides the ratio of the Lorentz forces and the inertial forces. A liquid–metal flow in a laminar regime has been simulated in the absence of a magnetic field (ReH = 1000, N = 0), and in two different magnetic ribs configurations for increasing values of the Stuart number (ReH = 1000, N equal to 0.5, 2 and 5). The analysis of the resulting velocity, temperature and force fields has revealed the heat transport phenomena governing these magneto-hydro-dynamic flows. Moreover, it has been noticed that, by increasing the strength of the magnetic field, the convective heat transfer increases with local Nusselt numbers that are as much 27.0% larger if compared to those evaluated in the absence of the magnetic field. Such a convective heat transfer enhancement has been obtained at expenses of the pressure drop, which increases more than twice with respect to the non-magnetic case.  相似文献   

6.
In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = fo/fs = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.  相似文献   

7.
The paper gives the results of the DNS/LES which was performed to investigate the transitional and turbulent non-isothermal flows within a rotor/stator cavity. Computations were performed for the cavity of aspect ratio L = 2–35, Rm = 1.8 and for rotational Reynolds numbers up to 290000. The main purpose of the investigations was to analyze the influence of aspect ratio and Reynolds number on the flow structure and heat transfer. The numerical solution is based on a pseudo-spectral Chebyshev–Fourier–Galerkin collocation approximation. The time scheme is semi-implicit second-order accurate, which combines an implicit treatment of the diffusive terms and an explicit Adams–Bashforth extrapolation for the non-linear convective terms. In the paper we analyze distributions of the Reynolds stress tensor components, the turbulent heat flux tensor components, Nusselt number distributions and the turbulent Prandtl number and other structural parameters, which can be useful for modeling purposes. Selected results are compared with the experimental data obtained for single heated rotating disk by Elkins and Eaton (2000).  相似文献   

8.
The paper presents results of a LES based numerical simulation of the turbulent jet-in-cross-flow (JICF) flowfield, with Reynolds number based on cross-flow velocity and jet diameter Re = 2400 and jet-to-cross-flow velocity ratio of R = 3.3. The JICF flow case has been investigated in great detail, involving conduction of two independent precursor simulations, prior to the main JICF simulation, as the considered case has turbulent inflow conditions on both jet and cross-stream side. The LES results are directly compared to pointwise Laser Doppler Anemometry (LDA) measurements, showing a very good agreement on the level of various statistical quantities in all flow regions but the immediate jet-to-cross-flow exhaustion zone. Several LES computations involving grids of up to 15 million grid points have been conducted, showing no improvement in the agreement between numerical results and measurements, possibly indicating a LDA measurement problem in this particular region.  相似文献   

9.
In the commercial test for smooth tube inserted with rotors-assembled strand comparing with non-inserted ones on condensers in electric power plant, using water as working fluid, the single-phase pressure drop and heat transfer were measured. It was found difficult to receive reliable and accurate enough data through commercial test. Meanwhile, the single-phase pressure drop and heat transfer in a rotors-assembled strand inserted tube were measured in laboratory, with the tube side Prandtl numbers varying from 5.67 to 5.80 and the tube side Reynolds numbers varying from 21,300 to 72,200. Before that, a validation experiment based on the same smooth tube was carried out to testify the experimental system and the data reduction method, in which fixed mounts were employed to eliminate entrance effects. The Prandtl numbers varied from 5.64 to 5.76 and the Reynolds numbers varied from 19,000 to 56,000 in the tube. The annular side Reynolds numbers remained nearly constant at the value of around 50,000 for all experiments, with the annular side Prandtl numbers varying from 8.02 to 8.22. The experimental results of smooth tube show that employment of fixed mounts leads to a visible bias of friction factor at relative low Reynolds numbers while it hardly affects the Nusselt numbers. On the other hand, experiment for the tube inserted with rotors-assembled strand show remarkable improvement for heat transfer with the Nusselt number increased by 9.764–11.87% and the overall heat transfer coefficient increased by 7.08–7.49% within the range of Reynolds number from about 21,300 to 55,500. Meanwhile, friction factor increases inevitably by 278.1–353.9% within the same range of Reynolds number. Based on through multivariant linear normal regression method, the Reynolds number and Prandtl number dependencies of the Nusselt number and friction factor were determined to be Nu = 0.0031Re0.9Pr1.0849 and f = 0.993Re−0.22.  相似文献   

10.
Vortex mechanism of heat transfer enhancement in a narrow channel with dimples has been investigated numerically using LES and URANS methods. The flow separation results in a formation of vortex structures which significantly enhance heat transfer on dimpled surfaces leading to a small increase in pressure loss. The heat transfer can be significantly increased by rounding the dimple edge and use of oval dimples. To get a deep insight into flow physics LES is performed for single phase flow in a channel with a spherical dimple. The instantaneous vortex formation and separation are investigated in and around the dimple area. Considered are Reynolds numbers (based on dimple print diameter) ReD = 20,000 and ReD = 40,000 the depth to print diameter ratio of Δ = 0.26. Frequency analysis of LES data revealed the presence of dominating frequencies in unsteady flow oscillations. Direct analysis of the flow field revealed the presence of coherent vortex structure inclined to the mean flow. The structure changes its orientation in time causing the long period oscillations with opposite-of-phase motion. Three dimensional proper orthogonal decomposition (POD) analysis is carried out on LES pressure and velocity fields to identify spatio-temporal structures hidden in the random fluctuations. Tornado-like spatial POD structures have been determined inside dimples.  相似文献   

11.
The effect of solid particles on the flow characteristics of axisymmetric turbulent coaxial jets for two flow conditions was studied. Simultaneous measurements of size and velocity distributions of continuous and dispersed phases in a two-phase flow are presented using a Phase Doppler Anemometry (PDA) technique. Spherical glass particles with a particle diameter range from 102 to 212 μm were used in this two-phase flow, the experimental results indicate a significant influence of the solid particles and the Re on the flow characteristics. The data show that the gas phase has lower mean velocity in the near-injector region and a higher mean velocity at the developed region. Near the injector at low Reynolds number (Re = 2839) the presence of the particles dampens the gas-phase turbulence, while at higher Reynolds number (Re = 11 893) the gas-phase turbulence and the velocity fluctuation of particle-laden jets are increased. The particle velocity at higher Reynolds number (Re = 11 893) and is lower at lower Reynolds number (Re = 2839). The slip velocity between particles and gas phase existed over the flow domain was examined. More importantly, the present experiment results suggest that, consideration of the gas characteristic length scales is insufficient to predict gas-phase turbulence modulation in gas-particle flows.  相似文献   

12.
Effects of peripherally-cut twisted tape insert on heat transfer, friction loss and thermal performance factor characteristics in a round tube were investigated. Nine different peripherally-cut twisted tapes with constant twist ratio (y/W = 3.0) and different three tape depth ratios (DR = d/W = 0.11, 0.22 and 0.33), each with three different tape width ratios (WR = w/W = 0.11, 0.22 and 0.33) were tested. Besides, one typical twisted tape was also tested for comparison. The measurement of heat transfer rate was conducted under uniform heat flux condition while that of friction factor was performed under isothermal condition. Tests were performed with Reynolds number in a range from 1000 to 20,000, using water as a working fluid. The experimental results revealed that both heat transfer rate and friction factor in the tube equipped with the peripherally-cut twisted tapes were significantly higher than those in the tube fitted with the typical twisted tape and plain tube, especially in the laminar flow regime. The higher turbulence intensity of fluid in the vicinity of the tube wall generated by the peripherally-cut twisted tape compared to that induced by the typical twisted tape is referred as the main reason for achieved results. The obtained results also demonstrated that as the depth ratio increased and width ratio decreased, the heat transfer enhancement increased. Over the range investigated, the peripherally-cut twisted tape enhanced heat transfer rates in term of Nusselt numbers up to 2.6 times (turbulent regime) and 12.8 times (laminar regime) of that in the plain tube. These corresponded to the maximum performance factors of 1.29 (turbulent regime) and 4.88 (laminar regime).  相似文献   

13.
The variation of natural convection heat transfer from an isothermal horizontal cylinder confined between two adiabatic walls of constant height is investigated by Mach-Zehnder interferometry technique. This paper focuses on the chimney effect due to the vertical position changes of cylinder (Y) located between two walls with a constant distance of W measuring 1.5 cylinder diameter. The cylinder’s local and average Nusselt numbers are determined for ratio of vertical position to its diameter ranging from Y/D = (0 to 10), and the Rayleigh number ranging from 3.5 × 103 to 1.4 × 104. There is an optimum distance between the walls in which the Nusselt number is maximum. Results are indicated with a single correlation which gives the average Nusselt number as a function of the ratio of vertical position to cylinder diameter and the Rayleigh number. The experimental data shows that there is an optimum vertical position for the cylinder at which the Nusselt number has a maximum value at each Rayleigh number. This optimal vertical position is derived from the correlation and is presented by an equation. The value of the optimum vertical position increases as the Rayleigh number increases.  相似文献   

14.
We report on large-eddy simulations (LES) of fully-developed asymmetric flow in a duct of a rectangular cross-section in which square-sectioned, equally-spaced ribs oriented perpendicular to the flow direction, were mounted on one of the walls. The configuration mimics a passage of internal cooling of a gas-turbine blade. The duct flow at a Reynolds number Re = 15,000 (based on hydraulic diameter Dh and bulk flow velocity U0) was subjected to clock-wise (stabilising) and anti-clock-wise (destabilising) orthogonal rotation at a moderate rotational number Ro = ΩDh/U0 = 0.3, where Ω is the angular velocity. The LES results reproduced well the available experimental results of Coletti et al. (2011) (in the mid-plane adjacent to the ribbed wall) and provided insight into the whole duct complementing the reference PIV measurement. We analyzed the effects of stabilising and destabilising rotation on the flow, vortical structures and turbulence statistics by comparison with the non-rotating case. The analysis includes the identification of depth of penetration of the rib-effects into the bulk flow, influence of flow three-dimensionality and the role of secondary motions, all shown to be strongly affected by the rotation and its direction.  相似文献   

15.
The qualities of a DES (Detached Eddy Simulation) and a PANS (Partially-Averaged Navier–Stokes) hybrid RANS/LES model, both based on the kω RANS turbulence model of Wilcox (2008, “Formulation of the kω turbulence model revisited” AIAA J., 46: 2823–2838), are analysed for simulation of plane impinging jets at a high nozzle-plate distance (H/B = 10, Re = 13,500; H is nozzle-plate distance, B is slot width; Reynolds number based on slot width and maximum velocity at nozzle exit) and a low nozzle-plate distance (H/B = 4, Re = 20,000). The mean velocity field, fluctuating velocity components, Reynolds stresses and skin friction at the impingement plate are compared with experimental data and LES (Large Eddy Simulation) results. The kω DES model is a double substitution type, following Davidson and Peng (2003, “Hybrid LES–RANS modelling: a one-equation SGS model combined with a kω model for predicting recirculating flows” Int. J. Numer. Meth. Fluids, 43: 1003–1018). This means that the turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the eddy viscosity formula. The kω PANS model is derived following Girimaji (2006, “Partially-Averaged Navier–Stokes model for turbulence: a Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation bridging method” J. Appl. Mech., 73: 413–421). The turbulent length scale in the PANS model is constructed from the total turbulent kinetic energy and the sub-filter dissipation rate. Both hybrid models change between RANS (Reynolds-Averaged Navier–Stokes) and LES based on the cube root of the cell volume. The hybrid techniques, in contrast to RANS, are able to reproduce the turbulent flow dynamics in the shear layers of the impacting jet. The change from RANS to LES is much slower however for the PANS model than for the DES model on fine enough grids. This delays the break-up process of the vortices generated in the shear layers with as a consequence that the DES model produces better results than the PANS model.  相似文献   

16.
The heat transfer and the pressure drop characteristics of turbulent flow of air (10,000 < Re < 100,000) through rectangular and square ducts with combined internal axial corrugations on all the surfaces of the ducts and with twisted-tape inserts with and without oblique teeth have been studied experimentally. The axial corrugations in combination with twisted-tapes of all types with oblique teeth have been found to perform better than those without oblique teeth in combination with axial corrugations. The heat transfer and the pressure drop measurements have been taken in separate test sections. Heat transfer tests were carried out in electrically heated stainless steel ducts incorporating uniform wall heat flux boundary conditions. Pressure drop tests were carried out in acrylic ducts. The flow friction and thermal characteristics are governed by duct aspect ratio, corrugation angle, corrugation pitch, twist ratio, space ratio, length, tooth horizontal length and tooth angle of the twisted-tape, Reynolds number and Prandtl number. Correlations developed for friction factor and Nusselt number have predicted the experimental data satisfactorily. The performance of the geometry under investigation has been evaluated. It has been found that on the basis of constant pumping power, up to 55% heat duty increase occurs for the combined axial corrugation and regularly spaced twisted-tape elements inserts with oblique teeth case compared to without oblique teeth twisted-tape inserts cases in the measured experimental parameters space. On the constant heat duty basis, the pumping power has been reduced up to 47% for the combined enhancement geometry than the individual enhancement geometries. However, full-length and short-length twisted-tapes with oblique teeth in combination with axial corrugations show only marginal improvements over the twisted-tapes without oblique teeth.  相似文献   

17.
Experimental investigation of heat transfer characteristics of circular tube fitted with straight full twist insert has been presented. The heat transfer coefficient increases with Reynolds number and decreasing spacer distance with maximum being 2 in. spacer distance for both the type of twist inserts. Also, there is no appreciable increase in heat transfer enhancement in straight full twist insert with 2 in. spacer distance. Experiments were carried out in turbulent flow using straight full twist insert with 4 in. spacer and similar trend of increasing Nusselt number with Reynolds number was observed. Performance evaluation analysis was made and the maximum performance ratio was obtained for each twist insert corresponding to the Reynolds number of 2550.  相似文献   

18.
Based on experimental investigations the present study evaluates instability and heat transfer phenomenon under condition of periodic flow boiling of water and ethanol in parallel triangular micro-channels. Tests were performed in the range of hydraulic diameter 100–220 μm, mass flux 32–200 kg/m2 s, heat flux 120–270 kW/m2, vapor quality x = 0.01–0.08. The period between successive events depends on the boiling number and decreases with an increase in the boiling number. The initial film thickness decreases with increasing heat flux. When the liquid film reached the minimum initial film thickness CHF regime occurred. Temporal variations of pressure drop, fluid and heater temperatures were periodic. Oscillation frequency is the same for the pressure drop, for the fluid temperature at the outlet manifold, and for the mean and maximum heater temperature fluctuations. All these fluctuations are in phase. The CHF phenomenon is different from that observed in a single channel of conventional size. A key difference between micro-channel heat sink and single conventional channel is amplification of parallel-channel instability prior to CHF. The dimensionless experimental values of the heat transfer coefficient are presented as the Nusselt number dependence on the Eotvos number and the boiling number.  相似文献   

19.
The paper presents average flow visualizations and measurements, obtained with the Particle Image Velocimetry (PIV) technique, of a submerged rectangular free jet of air in the range of Reynolds numbers from Re = 35,300 to Re = 2200, where the Reynolds number is defined according to the hydraulic diameter of a rectangular slot of height H. According to the literature, just after the exit of the jet there is a zone of flow, called zone of flow establishment, containing the region of mixing fluid, at the border with the stagnant fluid, and the potential core, where velocity on the centerline maintains a value almost equal to the exit one. After this zone is present the zone of established flow or fully developed region. The goal of the paper is to show, with average PIV visualizations and measurements, that, before the zone of flow establishment is present a region of flow, never mentioned by the literature and called undisturbed region of flow, with a length, LU, which decreases with the increase of the Reynolds number. The main characteristics of the undisturbed region is the fact that the velocity profile maintains almost equal to the exit one, and can also be identified by a constant height of the average PIV visualizations, with length, LCH, or by a constant turbulence on the centerline, with length LCT. The average PIV velocity and turbulence measurements are compared to those performed with the Hot Film Anemometry (HFA) technique. The average PIV visualizations show that the region of constant height has a length LCH which increases from LCH = H at Re = 35,300 to LCH = 45H at Re = 2200. The PIV measurements on the centerline of the jet show that turbulence remains constant at the level of the exit for a length, LCT, which increases from LCT = H at Re = 35,300 to LCT = 45H at Re = 2200. The PIV measurements show that velocity remains constant at the exit level for a length, LU, which increases from LU = H at Re = 35,300 to LU = 6H at Re = 2200 and is called undisturbed region of flow. In turbulent flow the length LU is almost equal to the lengths of the regions of constant height, LCH, and constant turbulence, LCT. In laminar flow, Re = 2200, the length of the undisturbed region of flow, LU, is greater than the lengths of the regions of constant height and turbulence, LCT = LCH = 45H. The average PIV and HFA velocity measurements confirm that the length of potential core, LP, increases from LP = 45H at Re = 35,300 to LP = 78H at Re = 2200, and are compared to the previous experimental and theoretical results of the literature in the zone of mixing fluid and in the fully developed region with a good agreement.  相似文献   

20.
The heat transfer and pressure drop were experimentally investigated in a coiled wire inserted tube in turbulent flow regime. The coiled wire has equilateral triangular cross section and was inserted separately from the tube wall. The experiments were carried out with three different pitch ratios (P/D = 1, 2 and 3) and two different ratio of equilateral triangle length side to tube diameter (a/D = 0.0714 and 0.0892) at a distance (s) of 1 mm from the tube wall in the range of Reynolds number from 3500 to 27,000. Uniform heat flux was applied to the external surface of the tube and air was selected as fluid. The experimental results obtained from a smooth tube were compared with those from the studies in literature for validation of experimental set-up. The use of coiled wire inserts leads to a considerable increase in heat transfer and pressure drop over the smooth tube. The Nusselt number rises with the increase of Reynolds number and wire thickness and the decrease of pitch ratio. The highest overall enhancement efficiency of 36.5% is achieved for the wire with a/D = 0.0892 and P/D = 1 at Reynolds number of 3858. Consequently, the experimental results reveal that the best operating regime of all coiled wire inserts is detected at low Reynolds number, leading to more compact heat exchanger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号