首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
A collaborative study was conducted to determine the protein content of raw and processed meat products by a protein-tagging and colorimetric technique. Meat products were prepared following AOAC Official Method 983.18 and analyzed using CEM Corporation's Sprint Rapid Protein Analyzer. Sprint provides protein results by combining an accurately weighed test portion with a known amount of dye-binding agent. The dye-binding agent binds with the lysine, histidine, and arginine, as well as the n-terminus of the proteins commonly found in raw meat and processed meat products. Results are displayed and reported by the Sprint as a percentage (g/100 g) of protein. Ten blind duplicate study samples were sent to 10 collaborating laboratories in the United States. The within-laboratory (repeatability) relative standard deviation (RSD(r)) ranged from 0.91 to 3.04%, and between-laboratories (reproducibility) relative standard deviation (RSDR) ranged from 1.50 to 3.41% for protein. The method is recommended for Official First Action.  相似文献   

2.
A collaborative study was conducted to evaluate the repeatability and reproducibility of an extension of AOAC Official Method 991.20, Nitrogen (Crude) in Milk, to animal feed, forage (plant tissue), grain, and oilseed materials. Test portions are digested in an aluminum block at 420 degrees C in sulfuric acid with potassium sulfate and a copper catalyst. Digests are cooled and diluted, and concentrated sodium hydroxide is added to neutralize the acid and make the digest basic; the liberated ammonia is distilled by using steam distillation. The liberated ammonia is trapped in a weak boric acid solution and titrated with a stronger standardized acid, hydrochloric acid; colorimetric endpoint detection is used. Fourteen blind samples were sent to 13 collaborators in the United States, Denmark, Sweden, Germany, and the United Kingdom. Recoveries of nitrogen from lysine, tryptophan, and acetanilide were 86.8, 98.8, and 100.1%, respectively. The within-laboratory relative standard deviation (RSDr, repeatability) ranged from 0.40 to 2.38% for crude protein. The among-laboratories (including within-) relative standard deviation (RSD(R), reproducibility) ranged from 0.44 to 2.38%. It is recommended that the method be adopted First Action by AOAC INTERNATIONAL. A lower concentration (1% H3BO3) of trapping solution was compared with the concentration specified in the original protocol (4% H3BO3) and was found comparable for use in an automatic titration system in which titration begins automatically as soon as distillation starts. The Study Directors recommend that 1% H3BO3 as an optional alternative to 4% boric acid trapping solution be allowed for automatic titrators that titrate throughout the distillation.  相似文献   

3.
The labeling of foods containing material derived from crustaceans such as shrimp and crab is to become mandatory in Japan because of increases in the number of allergy patients. To ensure proper labeling, 2 novel sandwich enzyme-linked immunosorbent assay (ELISA) kits for the determination of crustacean protein in processed foods, the N kit (Nissui Pharmaceutical Co., Ltd, Ibaraki, Japan) and the M kit (Maruha Nichiro Holdings, Inc., Ibaraki, Japan), have been developed. Five types of model processed foods containing 10 and/or 11.9 microg/g crustacean soluble protein were prepared for interlaboratory evaluation of the performance of these kits. The N kit displayed a relatively high level of reproducibility relative standard deviation (interlaboratory precision; 4.0-8.4% RSDR) and sufficient recovery (65-86%) for all the model processed foods. The M kit displayed sufficient reproducibility (17.6-20.5% RSDR) and a reasonably high level of recovery (82-103%). The repeatability relative standard deviation (RSDr) values regarding the detection of crustacean proteins in the 5 model foods were mostly < 5.1% RSDr for the N kit and 9.9% RSDr for the M kit. In conclusion, the results of this interlaboratory evaluation suggest that both these ELISA kits would be very useful for detecting crustacean protein in processed foods.  相似文献   

4.
A collaborative study was conducted to evaluate the repeatability and reproducibility of the FOSS FoodScan near-infrared spectrophotometer with artificial neural network calibration model and database for the determination of fat, moisture, and protein in meat and meat products. Representative samples were homogenized by grinding according to AOAC Official Method 983.18. Approximately 180 g ground sample was placed in a 140 mm round sample dish, and the dish was placed in the FoodScan. The operator ID was entered, the meat product profile within the software was selected, and the scanning process was initiated by pressing the "start" button. Results were displayed for percent (g/100 g) fat, moisture, and protein. Ten blind duplicate samples were sent to 15 collaborators in the United States. The within-laboratory (repeatability) relative standard deviation (RSD(r)) ranged from 0.22 to 2.67% for fat, 0.23 to 0.92% for moisture, and 0.35 to 2.13% for protein. The between-laboratories (reproducibility) relative standard deviation (RSD(R)) ranged from 0.52 to 6.89% for fat, 0.39 to 1.55% for moisture, and 0.54 to 5.23% for protein. The method is recommended for Official First Action.  相似文献   

5.
Ten laboratories participated in a collaborative study to determine the total moisture and fat in raw and processed meat products by microwave drying and nuclear magnetic resonance (NMR) spectroscopy. Meat products were prepared following the AOAC Method and analyzed using CEM Corp.'s SMART Trac Moisture and Fat Analysis system. SMART Trac provides moisture results by measuring the weight loss on drying by microwave energy. The dried sample is then analyzed by NMR spectrometry for fat content. Moisture and fat results are displayed and reported by the SMART Trac as a percentage (g/100 g). Microwave drying is an AOAC-approved reference method (Method 985.14), Moisture in Meat and Poultry Products. NMR spectrometry is a secondary technique used to determine the concentration of various constituents in biological, organic, or chemical samples. The study design was based on Youden's matched pair principle for collaborative tests. For the purposes of this study, 10 laboratories each tested 10 Youden matched pairs, for a total of 20 samples. The study samples represented a range of products processed daily in plant operations. Included were raw meat samples (beef, pork, chicken, and turkey) as well as processed meats (beef hot dog, pork sausage, and ham). The total moisture content of the undiluted samples, as received for the purposes of this study, was determined by AOAC Method 950.46 and ranged from 54.03 to 74.99%. The total fat content of the undiluted samples was determined by AOAC Method 960.39 and ranged from 1.00 to 29.79%. Statistical analysis of study results for total moisture yielded a relative standard deviation for repeatability (RSDr) range of 0.14 to 0.95% and a relative standard deviation for reproducibility (RSDR) range of 0.26 to 0.95%. Statistical analysis for total fat yielded similar RSDr and RSDR range of 0.74 to 4.08%. Results for turkey had higher RSDr and RSDR values, both at 12.6%, due to low fat content and possibly to the separation of the samples observed by some of the collaborators. Results demonstrate that microwave drying with NMR is a rapid, practical method providing results equivalent to AOAC Methods 950.46 (Forced Air Oven Drying) and 960.39 (Soxhlet Ether Extraction) in raw and processed meat products.  相似文献   

6.
A method for determining crude fat in animal feed, cereal grain, and forage (plant tissue) was collaboratively studied. Crude fat was extracted from the animal feed, cereal grain, or forage material with diethyl ether by the Randall method, also called the Soxtec method or the submersion method. The proposed submersion method considerably decreases the extraction time required to complete a batch of samples. The increase in throughput is very desirable in the quest for faster turnaround times and the greater efficiency in the use of labor. In addition, this method provides for reclamation of the solvent as a step of the method. The submersion method for fat extraction was previously studied for meat and meat products and was accepted as AOAC Official Method 991.36. Fourteen blind samples were sent to 12 collaborators in the United States, Sweden, Canada, and Germany. The within-laboratory relative standard deviation (repeatability) ranged from 1.09 to 9.26% for crude fat. Among-laboratory (including within) relative standard deviation (reproducibility) ranged from 1.0 to 21.0%. The method is recommended for Official First Action.  相似文献   

7.
A method for determining crude fat in animal feed, cereal grain, and forage (plant tissue) was collaboratively studied. Crude fat was extracted from the animal feed, cereal grain, or forage material with hexanes by the Randall method, also called the Soxtec method or the submersion method. The use of hexanes provides for an alternative to diethyl ether for fat extractions. The proposed submersion method considerably decreases the extraction time required to complete a batch of samples compared to Soxhlet. The increase in throughput is very desirable in the quest for faster turnaround times and the greater efficiency in the use of labor. In addition, this method provides for reclamation of the solvent as a step of the method. The submersion method for fat extraction was previously studied for meat and meat products and was accepted as AOAC Official Method 991.36. Fourteen blind samples were sent to 14 collaborators in the United States, Sweden, Canada, and Germany. The within-laboratory relative standard deviation (repeatability) ranged from 1.23 to 5.80% for crude fat. Among-laboratory (including within) relative standard deviation (reproducibility) ranged from 1.88 to 14.1%. The method is recommended for Official First Action.  相似文献   

8.
An interlaboratory study was conducted in China to validate the modified AOAC Official Method 2001.03 for the determination of total dietary fiber (TDF) in foods containing resistant maltodextrin (RMD), which will be adopted as the National Standard Method of China. The kind of buffer solution, the volume of filtrate evaporation, the volume of eluent for desalting and residual solution after evaporation, etc. were modified, which had been proved to have acceptable accuracy and precision in the routine assay. TDF contents in 3 representative foods and 2 kinds of RMD ingredient (i.e., NUTRIOSE 06 and NUTRIOSE 10) were measured using the modified method in 6 eligible laboratories representing commercial, industrial, and governmental laboratories in China. The results of the interlaboratory study indicated that the intralaboratory repeatability, interlaboratory reproducibility, and precision of the modified method are adequate for reliable analysis of TDF in food containing RMD, as well as resistant dextrin. Compared to AOAC Official Method 2001.03, the modified method is time- and cost-saving.  相似文献   

9.
The objective of this collaborative study was to evaluate the proposed method for determining the total nitrogen in soy sauce by the Kjeldahl method submitted to the Codex Alimentarius Commission for endorsement in accordance with the protocol for the design, conduct, and interpretation of method-performance studies. The digestive conditions of the proposed method are the addition of 10 mL of H2SO4, 10 g (8 g by using a block digester) of K2SO4, and 1 mL of 20% CuSO4 x 5H2O and 80 min boiling period after the liquid is cleared by a heating device. Seventeen laboratories participated, analyzing five soy sauce samples as blind duplicates. Since the volume sampling method used in the JAS (Japanese Agricultural Standard) method showed lower accuracy of data because of the density of soy sauce, the method of sampling by weight was adopted as the proposed method. The total amount of outlier data was within acceptable limits for method-performance studies (< or = 22.2%). Lysine and ammonium sulfate recoveries for all laboratories were > or = 98% and > or = 99% respectively. The RSDr (repeatability relative standard deviation) values ranged from 0.4 to 1.3%, and the RSDR (reproducibility relative standard deviation) values were from 0.8 to 1.9%. HORRAT (RSDR/predicted RSDR) for the reproducibility showed 0.2 to 0.4, indicating acceptable precision of the method and excellent analytical performance.  相似文献   

10.
A collaborative study was performed to determine the reproducibility of a method for the determination of methylcellulose (MC) and hydroxypropyl methylcellulose (HPMC) in food. These widely used food gums possess unusual solubility characteristics and cannot accurately be determined by existing dietary fiber methods. The new method uses the enzyme-digestion procedure of AOAC Official Method 991.43. Digestate solutions must be refrigerated to fully hydrate MC or HPMC. The chilled solutions are filtered and analyzed by size-exclusion liquid chromatography. Collaborating laboratories received 28 samples containing MC or HPMC in the range of 0-100%. The sample set included blind duplicates of 5 food matrixes (bread, milk, fish, potato, and powdered juice drink). Cochran and Grubbs tests were used to eliminate outliers. For food samples containing MC, values for within-laboratory precision, repeatability relative standard deviation (RSDr), ranged from 4.2 to 16%, and values for among-laboratories precision, reproducibility relative standard deviation (RSDR), ranged from 11 to 20%. For HPMC samples, RSDr values ranged from 6.4 to 27%, and RSDR values ranged from 17 to 39%. Recoveries of MC and HPMC from the food matrixes ranged from 78 to 101%. These results show acceptable precision and reproducibility for the determination of MC and HPMC, for which no Official AOAC Methods exist. It is recommended that this method be adopted as AOAC Official First Action.  相似文献   

11.
This paper reports the results of the interlaboratory peer validation study of AOAC Peer-Verified Method (PVM) 1:2,000 for the determination of niacin in infant formula by solid-phase extraction/liquid chromatography. We have used a Data Quality Objectives (DQO) approach to address not only method variability and robustness but also accuracy of data through the use of an appropriate reference material in conjunction with the interlaboratory validation study. Our DQO included the following: (1) statistical agreement of analytical results and quantitative recovery between 2 collaborating laboratories; (2) the repeatability relative standard deviation (RSDr) values and the HORRAT (Horwitz ratio) obtained (1.07), which satisfied the criteria of the Horwitz "limits of acceptability" at the analyte level present; (3) validation of lack of interference; and (4) accuracy agreement within assigned values for a certified reference material. National Institute of Standards and Technology Standard Reference Material (NIST SRM) 1846 Infant Formula, with a certified value of 63.3 +/- 7.6 microg/g for niacin content, was used as a test material for collaborative study and accuracy assessment. Niacin values obtained by the originating laboratory were 59.7 +/- 4.0 microg/g (95% confidence interval [CI] = 1.4 microg/g with a relative standard deviation [RSD] of 6.7%) and by the peer laboratory were 56.6 +/- 6.6 microg/g (95% CI = 4.1 microg/g, with an RSD of 11.7%). Statistical evaluation using the means equivalence test showed that nicotinic acid values obtained by the peer laboratory were equivalent to those values obtained by the originating laboratory. Linear calibration curves and quantitative recovery were obtained. Integration of the PVM process with a readily available certified reference material gives the user confidence in the accuracy of the data generated by the method through traceability to the reference material used.  相似文献   

12.
In an interlaboratory study, 8 French laboratories were tested for their proficiency in using the AOAC mouse bioassay for paralytic shellfish poisoning (PSP). Each laboratory received 1 saxitoxin (STX) standard solution, 1 STX acidified water solution for determination of the titer, 1 noncontaminated shellfish sample, 1 naturally contaminated shellfish sample, and 2 shellfish samples spiked, respectively, at low (152.8 microg STX/100 g meat) and moderate (334.7 microg STX/100 g meat) levels. All samples were analyzed in duplicate. Mean recoveries were 35.1% for the low level and 46.6% for the moderate level. Relative standard deviations (RSD) for within-laboratory variations (repeatability) ranged from 5.4 to 9.8%; RSD for between-laboratory variations (reproducibility) varied from 7.8 to 39.6%, depending on STX level. On the basis of overall performance, all 8 participating laboratories were proficient in their use of the AOAC mouse bioassay.  相似文献   

13.
Twelve laboratories representing 4 countries participated in an interlaboratory study conducted to determine all-trans-veta-carotene and total beta-carotene in dietary supplements and raw materials. Thirteen samples were sent as blind duplicates to the collaborators. Results obtained from 11 laboratories are reported. For products composed as softgels and tablets that were analyzed for total beta-carotene, the reproducibility relative standard deviation (RSDR) ranged from 3.35 to 23.09% and the HorRat values ranged from 1.06 to 3.72. For these products analyzed for trans beta-carotene, the reproducibility relative standard deviation (RSDR) ranged from 4.28 to 22.76% and the HorRat values ranged from 0.92 to 3.37. The RSDr and HorRat values in the analysis of a beadlet raw material were substantial and it is believed that the variability within the material itself introduced significant variation in subsampling. The method uses high pressure liquid chromatography (LC) in the reversed-phase mode with visible light absorbance for detection and quantitation. If high levels of alpha-carotenes are present, a second LC system is used for additional separation and quantitation of the carotene species. It is recommended that the method be adopted as an AOAC Official Method.  相似文献   

14.
A interlaboratory study was conducted to evaluate a liquid chromatographic (LC) procedure for the determination of total vitamin C in foods at levels of 5-60 mg/100 g. Emphasis was placed on fruit juices, although selected foods were also included in the study. Following dissolution of sample in water, endogenous dehydroascorbic acid was converted to ascorbic acid by precolumn reduction with dithiothreitol at neutral pH. Total ascorbate was determined by C18 reversed-phase LC with a phosphate eluent at pH 2.5, incorporating dithiothreitol to maintain vitamin C in the reduced form, and UV detection at 254 nm. Seven types of fruit juices and foods were tested by 19 collaborators in 7 countries. Three duplicate juices and foods met the criteria for Youden pairs and yielded repeatability relative standard deviation of 5.80-14.66%. Reproducibility relative standard deviation ranged from 6.36 to 35.54% (n = 10) with HORRAT values of 0.82-4.04. The LC method is suitable for routine use in fruit products and foods containing > 5 mg/100 g vitamin C and is recommended for further validation by AOAC INTERNATIONAL and International Fruit Juice Union.  相似文献   

15.
An interlaboratory trial for the determination of patulin in apple juice and fruit puree was conducted, involving 17 participants representing a cross section of industry, official food control, and research facilities. Mean recoveries reported ranged from 74 (10 ng/g) to 62% (25 ng/g) for apple juice and from 72 (25 ng/g) to 74% (10 ng/g) for fruit puree. Based on results for spiked samples (blind pairs at 2 levels), as well as naturally contaminated samples (blind pairs at 3 levels), the relative standard deviation for repeatability (RSDr) in juice ranged from 8.0 to 14.3% and in puree from 3.5 to 9.3%. The relative standard deviation for reproducibility (RSD(R)) in juice ranged from 19.8 to 39.5% and in puree from 12.5 to 35.2%, reflecting HORRAT values from 0.6 to 1.0 for juice and 0.4 to 0.9 for puree. The method showed acceptable within-laboratory and between-laboratory precision for each matrix, as required by current European legislation.  相似文献   

16.
The aim of this paper is to survey interlaboratory studies of performance data to produce highly permeable thin‐film composite (TFC) polyamide nanofiltration (NF) membrane in the form of flat sheet at bench scale. TFC polyamide NF membranes were fabricated via interfacial polymerization of 1,3‐phenylenediamine and trimesoyl chloride on porous polyethersulfone (PES) membrane. The NF membranes were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM), and cross‐flow filtration. The AFM and SEM analyses indicated that a rough and dense film was formed on the PES support membrane. The permeability and NaCl rejection of the NF membrane prepared at the presence of camphor sulfonic acid as pH regulator and triethylamine as accelerator in the aqueous solution were 21 l m?2 h?1 and 70%, respectively. In order to estimate the repeatability and reproducibility standard deviations, the development of an interlaboratory study was conducted by measurements of permeation flux and salt rejection of the synthesized membranes. Repeatability standard deviation of the permeation flux data for the membrane based on optimum formulation was 1.99, and reproducibility standard deviation was 3.55. Also based on this trend, repeatability standard deviation of the salt rejection data was 1.57, and reproducibility standard deviation was 4.11. The American Society for Testing and Materials standard E691‐05 was used for data validation of the repeatability and reproducibility standard deviations and consistency statistics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
Ten fishmeal samples (hidden duplicates of 4 meals plus 2 high-protein meals as a Youden pair), tryptophan, and nicotinic acid were analyzed by 18 laboratories using the Dumas method. Thirteen of the laboratories also analyzed the same 12 samples using their current Kjeldahl method. Recoveries (+/-SR) of tryptophan and nicotinic acid were 99.3+/-1.04 and 98.8+/-2.11% by Dumas and 97.1+/-3.03 and 74.6+/-26.76% by Kjeldahl. The Dumas method gave significantly greater values (P < 0.001) than the Kjeldahl method. For fishmeals, Kjeldahl N = 0.989 of Dumas N (P < 0.001). A similar proportionate difference (0.984 of Dumas N) was observed with tryptophan. Most laboratories failed to determine nicotinic acid correctly by Kjeldahl. For fishmeals, the relative standard deviations for repeatability and reproducibility were for Dumas 1.48 and 2.01% and Kjeldahl 1.62 and 2.37%, respectively. A single analysis conducted in 2 laboratories should not differ by more than 5.63% of the mean value when measured by Dumas or by more than 6.64% by Kjeldahl. It is concluded that with fishmeal, Dumas gives a more reliable measure of organic nitrogen than Kjeldahl, and, therefore, Dumas should be the method of choice.  相似文献   

18.
A single-laboratory validation study was conducted for a liquid chromatographic/mass spectrometric (LCIMS) method for the simultaneous determination of the free carnitine and total choline in milk-based infant formula and health-care products. The sample preparation used for both carnitine and choline was adapted from AOAC Official Method 999.14, with an acidic and enzymatic hydrolysis of esterified forms of choline. Carnitine and choline were quantified by ion-pair chromatography with single-quadrupole MS detection, using their respective deuterated internal standards. The repeatability relative standard deviation was < or =2.5 and 2.1%, respectively, for carnitine and choline. The intermediate reproducibility relative standard deviation was <4.7 and 2.4%, respectively, for carnitine and choline. The ranges of the average product-specific recoveries were 92-98 and 94-103%, respectively, for carnitine and choline. Choline concentration determined in infant formula reference material SRM 1846 was in agreement with the reference value. The proposed method was compared with the enzymatic methods for a range of products; good correlation (r = 0.99) was obtained, although a significant bias was observed for both analytes. The method, with a short chromatographic run time (7 min), is convenient for routine analysis to enhance analytical throughput and is a good alternative to enzymatic assays.  相似文献   

19.
The relative effectiveness of the SimPlate Coliform and E. coli Color Indicator (CEc-CI) method was compared to the AOAC 3-tube Most Probable Number (MPN) methods for enumerating and confirming coliforms and Escherichia coli in foods (966.23 and 966.24). In this study, test portions were prepared and analyzed according to the conditions stated in both the AOAC methods and SimPlate directions for use. Six food types were artificially contaminated with coliform bacteria and E. coli: frozen burritos, frozen broccoli, fluid pasteurized milk, whole almond nut meats, cheese, and powdered cake mix. Method comparisons were conducted. Overall, the SimPlate method demonstrated <0.3 log difference for total coliform and E. coli counts compared to the AOAC reference methods for the majority of food types and levels analyzed. In all cases, the repeatability and reproducibility of the SimPlate CEc-CI method were not different from those of the reference methods and in certain cases, were statistically better than those of the AOAC 3-tube MPN methods. These results indicate that the SimPlate CEc-CI method and the reference culture methods are comparable for enumeration of both total coliforms and E. coli in foods.  相似文献   

20.
Because food allergens from tree nuts, including walnuts, are a frequent cause of adverse food reactions for allergic patients, the labeling of foods containing ingredients derived from tree nuts is required in numerous countries. According to Japanese regulations, the labeling of food products containing walnuts is recommended. To ensure proper labeling, a novel sandwich ELISA kit for the determination of walnut protein in processed foods (Walnut Protein [2S-Albumin] Kit; Morinaga Institute of Biological Science, Inc.; "walnut kit") has been developed. We prepared seven types of incurred samples (model processed foods: biscuits, bread, sponge cake, orange juice, jelly, chicken meatballs, and rice gruel) containing 10 microg walnut soluble protein/g of food for use in interlaboratory evaluations of the walnut kit. The walnut kit displayed sufficient reproducibility relative standard deviations (interlaboratory precision: 5.8-9.9% RSDR) and a high level of recovery (81-119%) for all the incurred samples. All the repeatability relative standard deviation (RSDr) values for the incurred samples that were examined were less than 6.0%. The results of this interlaboratory evaluation suggested that the walnut kit could be used as a precise and reliable tool for determination of walnut protein in processed foods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号