首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
The reactions of neutral or cationic manganese carbonyl species towards the oxo-nitrosyl complex [Na(MeOH)[Mo(5)O(13)(OCH(3))(4)(NO)]](2-) have been investigated in various conditions. This system provides an unique opportunity for probing the basic reactions involved in the preparation of solid oxide-supported heterogeneous catalysts, that is, mobility of transition-metal species at the surface and dissolution-precipitation of the support. Under nitrogen and in the dark, the reaction of in situ generated fac-[Mn(CO)(3)](+) species with (nBu(4)N)(2)[Na(MeOH)-[Mo(5)O(13)(OMe)(4)(NO)]] in MeOH yields (nBu(4)N)(2)[Mn(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] at room temperature, while (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)] is obtained under reflux. The former transforms into the latter under reflux in methanol in the presence of sodium bromide; this involves the migration of the fac-[Mn(CO)(3)](+) moiety from a basal kappa(2)O coordination site to a lateral kappa(3)O site. Oxidation and decarbonylation of manganese carbonyl species as well as degradation of the oxonitrosyl starting material and reaggregation of oxo(methoxo)molybdenum fragments occur in non-deareated MeOH, and both (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)] and (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] as well as (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been obtained in this way. The rhenium analogue (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]] has also been synthesized. The crystal structures of (nBu(4)N)(2)[Re(CO)(3)(H(2)O)[Mo(5)O(13)(OMe)(4)(NO)]], (nBu(4)N)(3)[Na[Mo(5)O(13)(OMe)(4)(NO)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(16)(OMe)(2)](2)[Mn(CO)(3)](2)], (nBu(4)N)(4)[Mn(H(2)O)(2)[Mo(5)O(13)(OMe)(4)(NO)](2)] and (nBu(4)N)(2)[MnBr[Mo(5)O(13)(OMe)(4)(NO)]] have been determined.  相似文献   

2.
Six Mo(IV)-Cu(II) complexes, [Cu(tpa)](2)[Mo(CN)(8)]·15H(2)O (1, tpa = tris(2-pyridylmethyl)amine), [Cu(tren)](2)[Mo(CN)(8)]·5.25H(2)O (2, tren = tris(2-aminoethyl)amine), [Cu(en)(2)][Cu(0.5)(en)][Cu(0.5)(en)(H(2)O)][Mo(CN)(8)]·4H(2)O (3, en = ethylenediamine), [Cu(bapa)](3)[Mo(CN)(8)](1.5)·12.5H(2)O (4, bapa = bis(3-aminopropyl)amine), [Cu(bapen)](2)[Mo(CN)(8)]·4H(2)O (5, bapen = N,N'-bis(3-aminopropyl)ethylenediamine), and [Cu(pn)(2)][Cu(pn)][Mo(CN)(8)]·3.5H(2)O (6, pn = 1,3-diaminopropane), were synthesized and characterized. Single-crystal X-ray diffraction analyses show that 1-6 have different structures varying from trinuclear clusters (1-2), a one-dimensional belt (3), two-dimensional grids (4-5), to a three-dimensional structure (6). Magnetic and ESR measurements suggest that 1-6 exhibit thermally reversible photoresponsive properties on UV light irradiation through a Mo(IV)-to-Cu(II) charge transfer mechanism. A trinuclear compound [Cu(II)(tpa)](2)[Mo(V)(CN)(8)](ClO(4)) (7) was synthesized as a model of the photoinduced intermediate.  相似文献   

3.
The reaction of UO(2)(NO(3))(2).6H(2)O with Cs(2)CO(3) or CsCl, H(3)PO(4), and Ga(2)O(3) under mild hydrothermal conditions results in the formation of Cs(4)[(UO(2))(2)(GaOH)(2)(PO(4))(4)].H(2)O (UGaP-1) or Cs[UO(2)Ga(PO(4))(2)] (UGaP-2). The structure of UGaP-1 was solved from a twinned crystal revealing a three-dimensional framework structure consisting of one-dimensional (1)(infinity)[Ga(OH)(PO(4))(2)](4-) chains composed of corner-sharing GaO(6) octahedra and bridging PO(4) tetrahedra that extend along the c axis. The phosphate anions bind the UO(2)(2+) cations to form UO(7) pentagonal bipyramids. The UO(7) moieties edge-share to create dimers that link the gallium phosphate substructure into a three-dimensional (3)(infinity)[(UO(2))(2)(GaOH)(2)(PO(4))(4)](4-) anionic lattice that has intersecting channels running down the b and c axes. Cs(+) cations and water molecules occupy these channels. The structure of UGaP-2 is also three-dimensional and contains one-dimensional (1)(infinity)[Ga(PO(4))(2)](3-) gallium phosphate chains that extend down the a axis. These chains are formed from fused eight-membered rings of corner-sharing GaO(4) and PO(4) tetrahedra. The chains are in turn linked together into a three-dimensional (3)(infinity)[UO(2)Ga(PO(4))(2)](1-) framework by edge-sharing UO(7) dimers as occurs in UGaP-1. There are channels that run down the a and b axes through the framework. These channels contain the Cs(+) cations. Ion-exchange studies indicate that the Cs(+) cations in UGaP-1 and UGaP-2 can be exchanged for Ca(2+) and Ba(2+). Crystallographic data: UGaP-1, monoclinic, space group P2(1)/c, a = 18.872(1), b = 9.5105(7), c = 14.007(1) A, beta = 109.65(3)(o) , Z = 4 (T = 295 K); UGaP-2, triclinic, space group P, a = 7.7765(6), b = 8.5043(7), c = 8.9115(7) A, alpha = 66.642(1)(o), beta = 70.563(1)(o), gamma = 84.003(2)(o), Z = 2 (T = 193 K).  相似文献   

4.
Treatment of [M(II)(en)(3)][OTs](2) or methanolic ethylenediamine solutions containing transition metal p-toluenesulfonates (M(II) = Mn, Co) with aqueous K(4)M(IV)(CN)(8).2H(2)O or Cs(3)M(V)(CN)(8) (M(IV) = Mo, W; M(V) = Mo) affords crystalline clusters of [M(II)(en)(3)][cis-M(II)(en)(2)(OH(2))(mu-NC)M(IV)(CN)(7)].2H(2)O (M(IV) = Mo; M(II) = Mn, 1; Ni, 5; M(IV) = W; M(II) = Mn, 2; Ni, 6) and [cis-M(II)(en)(2)(OH(2))](2)[(mu-NC)(2)M(IV)(CN)(6)].4H(2)O (M(IV) = Mo; M(II) = Co, 3; Ni, 7; M(IV) = W; M(II) = Co, 4) stoichiometry. Each cluster contains cis-M(II)(en)(2)(OH(2))(mu-NC)(2+) units that likely result from dissociative loss of en from [M(II)(en)(3)](2+), affording cis-M(II)(en)(2)(OH(2))(2)(2+) intermediates that are trapped by M(IV)(CN)(8)(4-).  相似文献   

5.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

6.
The influence of the nature of alkali metal cations on the structure of the species obtained from the trivacant precursor A-alpha-[SiW(9)O(34)](10-) has been studied. Starting from the potassium salt 1, K(10)A-alpha-[SiW(9)O(34)].24H(2)O, the sandwich-type complex 2, K(10.75)[Co(H(2)O)(6)](0.5)[Co(H(2)O)(4)Cl](0.25)A-alpha-[K(2)(Co(H(2)O)(2))(3)(SiW(9)O(34) )(2)].32H(2)O, has been obtained. The crystal structures of these two compounds consist of two A-alpha-[SiW(9)O(34)](10-) anions linked by a set of potassium (1) or cobalt plus potassium cations (2), and the relative orientation of the two half-anions is the same. Attempts to link two A-alpha-[SiW(9)O(34)](10-) anions by tungsten atoms instead of cobalt failed whatever the alkali metal cation. Moreover, the nondisordered structure of Cs(15)[K(SiW(11)O(39))(2)].39H(2)O is described. Two [SiW(11)O(39)](8-) anions are linked through a potassium cation with a "trans-oid" conformation, and the potassium occupies a cubic coordination site.  相似文献   

7.
Two novel cyanide-bridged ferrimagnets, [Mn(4dmap)(4)](3)[M(CN)(6)](2)- 10 H(2)O (4dmap=4-dimethylaminopyridine, M=Cr (1) and Mn (2)), have been prepared from the reaction of MnCl(2)4 H(2)O, a monodentate coligand (4dmap), with K(3)[M(CN)(6)]. X-ray crystallographic results show that these are isomorphous, and form a unique twofold interpenetrated three-dimensional framework with a triconnected 6.10(2) net. The framework contains two types of one-dimensional channel: hexagonal channels based on a cyanide-bridged Mn(6)M(6) hexagon, and triangle channels segmented by CN-Mn-NC linkages, which are filled with lattice water molecules. The dimethylamino groups of the 4dmap coligands are located around a pore and form the basic inner space. Variable-temperature X-ray powder diffraction and thermogravimetric analysis results show that the frameworks of both compounds are susceptible to dehydration through the loss of strongly hydrogen-bonded lattice water molecules. Magnetic measurements on both compounds show a ferrimagnetic ordering occurs at low temperature, T(C)=17 K for 1 and 6 K for 2. Application of hydrostatic pressure showed a positive effect on the magnetic ordering. Both values of T(C) increased linearly, to 25 K for 1 and 15 K for 2 at 1.0 GPa. The magnetic properties of both compounds were reversibly modulated by the external stress.  相似文献   

8.
The reaction of [M(CN)(6)](3-) (M = Cr(3+), Mn(3+), Fe(3+), Co(3+)) and [M(CN)(8)](4-/3-) (M = Mo(4+/5+), W(4+/5+)) with the trinuclear copper(II) complex of 1,3,5-triazine-2,4,6-triyltris[3-(1,3,5,8,12-pentaazacyclotetradecane)] ([Cu(3)(L)](6+)) leads to partially encapsulated cyanometalates. With hexacyanometalate(III) complexes, [Cu(3)(L)](6+) forms the isostructural host-guest complexes [[[Cu(3)(L)(OH(2))(2)][M(CN)(6)](2)][M(CN)(6)]][M(CN)(6)]30 H(2)O with one bridging, two partially encapsulated, and one isolated [M(CN)(6)](3-) unit. The octacyanometalates of Mo(4+/5+) and W(4+/5+) are encapsulated by two tris-macrocyclic host units. Due to the stability of the +IV oxidation state of Mo and W, only assemblies with [M(CN)(8)](4-) were obtained. The Mo(4+) and W(4+) complexes were crystallized in two different structural forms: [[Cu(3)(L)(OH(2))](2)[Mo(CN)(8)]](NO(3))(8)15 H(2)O with a structural motif that involves isolated spherical [[Cu(3)(L)(OH(2))](2)[M(CN)(8)]](8+) ions and a "string-of-pearls" type of structure [[[Cu(3)(L)](2)[M(CN)(8)]][M(CN)(8)]](NO(3))(4) 20 H(2)O, with [M(CN)(8)](4-) ions that bridge the encapsulated octacyanometalates in a two-dimensional network. The magnetic exchange coupling between the various paramagnetic centers is characterized by temperature-dependent magnetic susceptibility and field-dependent magnetization data. Exchange between the CuCu pairs in the [Cu(3)(L)](6+) "ligand" is weakly antiferromagnetic. Ferromagnetic interactions are observed in the cyanometalate assemblies with Cr(3+), exchange coupling of Mn(3+) and Fe(3+) is very small, and the octacoordinate Mo(4+) and W(4+) systems have a closed-shell ground state.  相似文献   

9.
Heating WTe(2), Te, and Br(2) at 390 degrees C followed by extraction with KCN gives [W(3)Te(7)(CN)(6)](2-). Crystal structures of double salts Cs(3.5)K{[W(3)Te(7)(CN)(6)]Br}Br(1.5).4.5H(2)O (1), Cs(2)K(4){[W(3)Te(7)(CN)(6)](2)Cl}Cl.5H(2)O (2), and (Ph(4)P)(3){[W(3)Te(7)(CN)(6)]Br}.H(2)O (3) reveal short Te(2)...X (X = Cl, Br) contacts. Reaction of polymeric Mo(3)Se(7)Br(4) with KNCSe melt gives [Mo(3)Se(7)(CN)(6)](2-). Reactions of polymeric Mo(3)S(7)Br(4) and Mo(3)Te(7)I(4) with KNCSe melt (200-220 degrees C) all give as final product [Mo(3)Se(7)(CN)(6)](2)(-) via intermediate formation of [Mo(3)S(4)Se(3)(CN)(6)](2-)/[Mo(3)SSe(6)(CN)(6)](2-) and of [Mo(3)Te(4)Se(3)(CN)(6)](2-), respectively, as was shown by ESI-MS. (NH(4))(1.5)K(3){[Mo(3)Se(7)(CN)(6)]I}I(1.5).4.5H(2)O (4) was isolated and structurally characterized. Reactions of W(3)Q(7)Br(4) (Q = S, Se) with KNCSe lead to [W(3)Q(4)(CN)(9)](5-). Heating W(3)Te(7)Br(4) in KCNSe melt gives a complicated mixture of W(3)Q(7) and W(3)Q(4) derivatives, as was shown by ESI-MS, from which E(3)[W(3)(mu(3)-Te)(mu-TeSe)(3)(CN)(6)]Br.6H(2)O (5) and K(5)[W(3)(mu(3)-Te)(mu-Se)(3)(CN)(9)] (6) were isolated. X-ray analysis of 5 reveals the presence of a new TeSe(2-) ligand. The complexes were characterized by IR, Raman, electronic, and (77)Se and (125)Te NMR spectra and by ESI mass spectrometry.  相似文献   

10.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

11.
Face-capped octahedral [Re(6)Se(8)(CN)(6)](3-/4-) clusters are used in place of octahedral [M(CN)(6)](3-/4-) complexes for the synthesis of microporous Prussian blue type solids with adjustable porosity. The reaction between [Fe(H(2)O)(6)](3+) and [Re(6)Se(8)(CN)(6)](4-) in aqueous solution yields, upon heating, Fe(4)[Re(6)Se(8)(CN)(6)](3).36H(2)O (4). A single-crystal X-ray analysis confirms the structure of 4 to be a direct expansion of Prussian blue (Fe(4)[Fe(CN)(6)](3).14H(2)O), with [Re(6)Se(8)(CN)(6)](4-) clusters connected through octahedral Fe(3+) ions in a cubic three-dimensional framework. As in Prussian blue, one out of every four hexacyanide units is missing from the structure, creating sizable, water-filled cavities within the neutral framework. Oxidation of (Bu(4)N)(4)[Re(6)Se(8)(CN)(6)] (1) with iodine in methanol produces (Bu(4)N)(3)[Re(6)Se(8)(CN)(6)] (2), which is then metathesized to give the water-soluble salt Na(3)[Re(6)Se(8)(CN)(6)] (3). Reaction of [Co(H(2)O)(6)](2+) or [Ni(H(2)O)(6)](2+) with 3 in aqueous solution affords Co(3)[Re(6)Se(8)(CN)(6)](2).25H(2)O (5) or Ni(3)[Re(6)Se(8)(CN)(6)](2).33H(2)O (6). Powder X-ray diffraction data show these compounds to adopt structures based on the same cubic framework present in 4, but with one out of every three cluster hexacyanide units missing as a consequence of charge balance. In contrast, reaction of [Ga(H(2)O)(6)](3+) with 3 gives Ga[Re(6)Se(8)(CN)(6)].6H(2)O (7), wherein charge balance dictates a fully occupied cubic framework enclosing much smaller cavities. The expanded Prussian blue analogues 4-7 can be fully dehydrated, and retain their crystallinity with extended heating at 250 degrees C. Consistent with the trend in the frequency of framework vacancies, dinitrogen sorption isotherms show porosity to increase along the series of representative compounds 7, Ga(4)[Re(6)Se(8)(CN)(6)](3).38H(2)O, and 6. Furthermore, all of these phases display a significantly higher sorption capacity and surface area than observed in dehydrated Prussian blue. Despite incorporating paramagnetic [Re(6)Se(8)(CN)(6)](3-) clusters, no evidence for magnetic ordering in compound 6 is apparent at temperatures down to 5 K. Reactions related to those employed in preparing compounds 4-6, but carried out at lower pH, produce the isostructural phases H[cis-M(H(2)O)(2)][Re(6)Se(8)(CN)(6)].2H(2)O (M = Fe (8), Co (9), Ni (10)). The crystal structure of 8 reveals a densely packed three-dimensional framework in which [Re(6)Se(8)(CN)(6)](4-) clusters are interlinked through a combination of protons and Fe(3+) ions.  相似文献   

12.
Reactions of [W(CN)(8)](3-/4-) anions with complexes of Mn(2+) ion with tridentate organic ligand 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz) lead to a series of heterobimetallic complexes. The crystal structures of these compounds are derived from the same basic structural fragment, namely a W(2)Mn(2) square constructed of alternating cyanide-bridged W and Mn ions. In [Mn(II)(tptz)(OAc)(H(2)O)(2)](2){[Mn(II)(tptz)(MeOH)(1.58)(H(2)O)(0.42)](2)[W(V)(CN)(8)](2)}.5 MeOH.9.85 H(2)O (3), isolated molecular squares are co-crystallized with mononuclear cationic Mn(II) complexes. The structure of {[Mn(II)(tptz)(MeOH)](2)[W(IV)(CN)(8)].2 MeOH}(infinity) (4) is based on an infinite chain of vertex-sharing squares, while {[Mn(II) (2)(tptz)(2)(MeOH)(3)(OAc)][W(V)(CN)(8)].3.5 MeOH0.25 H(2)O}(infinity) (5) and {[Mn(II) (2)(tptz)(2)(MeOH)(3)W(V)(CN)(8)][Mn(II)(tptz)(MeOH)W(V)(CN)(8)].2 H(2).OMeOH}(8) (7) are derived from such an infinite chain by removing one of the W-C[triple bond]N-Mn linkages in each of the squares. The decanuclear cluster [Mn(II) (6)(tptz)(6)(MeOH)(4)(DMF)(2)W(V) (4)(CN)(32)].8.2 H(2)O.2.3 MeOH (6) is a truncated version of structure 4 and consists of three vertex-sharing W(2)Mn(2) squares. The structure of [Mn(II)(tptz)(MeOH)(NO(3))](2)[Mn(II)(tptz)(MeOH) (DMF)](2)[W(V)(CN)(8)](2).6 MeOH (8) consists of a hexanuclear cluster, in which the central W(2)Mn(2) square is extended by two Mn side-arms attached via CN(-) ligands to the W corners of the square. The magnetic behavior of these heterobimetallic complexes (except for 4) is dominated by antiferromagnetic coupling between Mn(II) and W(V) ions mediated by cyanide bridges. Compounds 3, 6, and 8 exhibit high spin ground states of S=4, 13, and 9, respectively, while 5 and 7 exhibit behavior typical of a ferrimagnetic chain with alternating spin centers. Complex 4 contains diamagnetic W(IV) centers but holds promise as a potential photomagnetic solid.  相似文献   

13.
Luminescent [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O), which forms from aqueous solutions of [(NH(3))(4)Pt]Cl(2) and K[Au(CN)(2)], crystallizes with extended chains of the two ions with multiple close Pt...Au (3.2804(4) and 3.2794(4) A) and Au...Au (3.2902(5), 3.3312(5), and 3.1902(4) A) contacts. Nonluminescent [(NH(3))(4)Pt][Ag(CN)(2)](2).1.4(H(2)O) is isostructural with [(NH(3))(4)Pt][Au(CN)(2)](2).1.5(H(2)O). Treatment of [(NH(3))(6)Ni]Cl(2) with K[Au(CN)(2)] forms [(NH(3))(2)Ni][Au(CN)(2)](2) in which the [Au(CN)(2)](-) ions function as nitrile ligands toward nickel, which assumes a six-coordinate structure with trans NH(3) ligands. The [Au(CN)(2)](-) ions self-associate into linear columns with close Au...Au contacts of 3.0830(5) A, and pairs of gold ions in these chains make additional but longer (3.4246(5) A) contacts with other gold ions.  相似文献   

14.
Ni ZH  Kou HZ  Zhang LF  Ni WW  Jiang YB  Cui AL  Ribas J  Sato O 《Inorganic chemistry》2005,44(26):9631-9633
A new cyanide-containing building block K[Fe(pcq)(CN)(3)] [1; pcq(-) = 8-(pyridine-2-carboxamido)quinoline anion] containing a low-spin Fe(III) center with three cyanide groups in a meridional arrangement has been successfully designed and synthesized. Three cyanide-bridged trinuclear Fe(III)(2)Mn(II) complexes, [Fe(pcq)(CN)(3)](2)[Mn(CH(3)OH)(2)(H(2)O)(2)].2H(2)O (2), [Fe(pcq)(CN)(3)](2)[Mn(bipy)(2)].CH(3)OH.2H(2)O (3), and [Fe(pcq)(CN)(3)](2)[Mn(phen)(2)].CH(3)OH.2H(2)O (4), have been synthesized and structurally characterized. The magnetic susceptibilities of the three heterometallic complexes have been investigated.  相似文献   

15.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

16.
Interaction of [Ce(L(OEt))(2)(NO(3))(2)] (L(OEt)(-) = [Co(eta(5)-C(5)H(5)){P(O)(OEt)(2)}(3)](-)) with (NH(4))(6)[Mo(7)O(24)] in water affords the cerium(iv)-containing oxomolybdenum cluster [H(4)(CeL(OEt))(6)Mo(9)O(38)], which exhibits a unique Ce(6)Mo(9)O(38) core structure.  相似文献   

17.
Zhang JH  Kong F  Mao JG 《Inorganic chemistry》2011,50(7):3037-3043
Two new barium borogermanates with two types of novel structures, namely, Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) and Ba(3)Ge(2)B(6)O(16), have been synthesized by hydrothermal or high-temperature solid-state reactions. They represent the first examples of alkaline-earth borogermanates. Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) crystallized in a polar space group Cc. Its structure features a novel three-dimensional anionic framework composed of [B(7)O(16)(OH)(2)](13-) polyanions that are bridged by Ge atoms with one-dimensional (1D) 10-membered-ring (MR) tunnels along the b axis. The Ba(II) cations, hydroxide ions, and water molecules are located at the above tunnels. Ba(3)Ge(2)B(6)O(16) crystallizes in centrosymmetric space group P1. Its structure exhibits a thick layer composed of circular B(6)O(16) units connected by GeO(4) tetrahedra via corner sharing, forming 1D 4- and 6-MR tunnels along the c axis. Ba1 ions reside in the tunnels of the 6-MRs, whereas Ba2 ions are located at the interlayer space. Both compounds feature new types of topological structures. Second-harmonic-generation (SHG) measurements indicate that Ba(3)[Ge(2)B(7)O(16)(OH)(2)](OH)(H(2)O) displays a weak SHG response of about 0.3 times that of KH(2)PO(4). Optical, thermal stability, and ferroelectric properties as well as theoretical calculations have also been performed.  相似文献   

18.
Kou HZ  Zhou BC  Liao DZ  Wang RJ  Li Y 《Inorganic chemistry》2002,41(25):6887-6891
Two cyano-bridged Ni(II)-Fe(III) complexes [(H(3)O)[Ni(H(2)L)](2)[Fe(CN)(6)](2).[Fe(CN)(6)].6H(2)O](n) (1) and [K(18-C-6)(H(2)O)(2)][Ni(H(2)L)](2)[Fe(CN)(6)](3).4(18-C-6).20H(2)O (2) (L = 3,10-bis(2-aminoethyl)-1,3,6,8,10,12-hexaazacyclotetradecane, 18-C-6 = 18-crown-6-ether) have been synthesized and characterized structurally and magnetically. Complex 1 has a zigzag one-dimensional structure, in which two trans-CN(-) ligands of each [Fe(CN)(6)](3)(-) link two trans-[Ni(H(2)L)](4+) groups, and in turn, each trans-[Ni(H(2)L)](4+) links two [Fe(CN)(6)](3)(-) in a trans fashion. Complex 2 is composed of cyano-bridged pentanuclear molecules with moieties connected by the trans-CN(-) ligands of [Fe(CN)(6)](3)(-). Magnetic studies show the existence of ferromagnetic Ni(II)-Fe(III) interactions in both complexes. The intermetallic magnetic coupling constant of both complexes was analyzed by using an approximate model on the basis of the structural features.  相似文献   

19.
The syntheses and structural and physical characterization of the compounds [Cu(bipy)(2)](2)[Mo(CN)(8)].5H(2)O. CH(3)OH (1) with bipy = 2,2'-bipyridine and M(II)(2)[Mo(IV)(CN)(8)].xH(2)O (2 with M = Cu, x = 7.5; 3 with M = Mn, x = 9.5) are presented. 1 crystallizes in the triclinic space group P1; (a = 11.3006(4) A, b = 12.0886(5) A, c = 22.9589(9) A, alpha = 81.799(2) degrees, beta = 79.787(2) degrees, gamma = 62.873(2) degrees, Z = 2). The structure of 1 consists of neutral trinuclear molecules in which a central [Mo(CN8)](4-) anion is linked to two [Cu(bipy)2](2+) cations through two cyanide bridges. 2 crystallizes poorly, and hence, structural information has been obtained from the wide-angle X-ray scattering (WAXS) technique, by comparison with 3 and Fe(II)(2)(H(2)O)(4)[Mo(IV)(CN)(8)].4H(2)O whose X-ray structure has been previously solved. 2, 3, and Fe(II)(2)(H(2)O)(4)[Mo(IV)(CN)(8)].4H(2)O form extended networks with all the cyano groups acting as bridges. The magnetic properties have shown that 1 and 2 behave as paramagnets. Under irradiation with light, they exhibit important modifications of their magnetic properties, with the appearance at low temperature of magnetic interactions. For 1 the modifications are irreversible, whereas they are reversible for 2 after cycling in temperature. These photomagnetic effects are thought to be caused by the conversion of Mo(IV) (diamagnetic) to Mo(V)(paramagnetic) through a photooxidation mechanism for 1 and a photoinduced electron transfer in 2. These results have been correlated with the structural features.  相似文献   

20.
Two bimetallic assemblies, [Ni(tn)(2)](2)[Cr(CN)(5)(NO)]OH.H(2)O (1) and [Ni(tn)(2)](2)[Co(CN)(6)]NO(3).2H(2)O (2) (tn = 1,3-diaminopropane), have been prepared and structurally and magnetically characterized. Crystal data for 1 (2): space group P1 (P1), a = 8.698(3) (8.937(2)) A, b = 10.001(2) (9.863(1)) A, c = 10.158(2) (10.064(1)) A, alpha = 87.40(2) (86.064(10)) degrees, beta = 65.10(2) (65.489(10)) degrees, gamma = 81.63(2) (81.572(12)) degrees and Z = 1 (1). Both structures consist of two-dimensional grid-like polycations containing Ni-N triple bond C-M linkages (M = Cr or Co) and counteranions (OH, NO(3)). Magnetic studies of 1 showed that the complex displays a metamagnetic behavior originating from intralayer ferromagnetic and interlayer antiferromagnetic interactions. Long-range antiferromagnetic ordering was observed at T(N) = 3.3 K. Complex 2 exhibits intramolecular ferromagnetic interactions through the diamagnetic N triple bond C-Co-N triple bond C bridges, owing to superexchange involving the empty d(sigma) orbital of the diamagnetic Co(III) ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号