首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

A double-layer liquid crystal (LC) lens array with composited dielectric layer is proposed. In our design, a spatially non-uniform electric field is generated between the strip electrodes, resulting in a gradient refractive index distribution in the LC layer. Since the upper and lower parts of the LC lens array both adopt a composite dielectric layer, the operation voltage of the LC lens array is effectively reduced. In terms of LC lenslet, the double-layer design doubles the phase difference between the centre and the periphery of the LC layer, thereby reducing the focal length of the LC lens array. In addition, the shortest focal length (~1.78 mm) of the LC lens array is obtained at V = 3.3 V, and the LC lens array has a large focusing range.  相似文献   

2.
An electrically tunable liquid crystal (LC) lens with dual hole-patterned electrodes is demonstrated. When the LC lens is operated at low voltages, the dual hole-patterned electrodes with different diameters impart the lens with a coaxial bifocal characteristic. At high voltages, the proposed LC lens functions as a conventional lens with a single focal length but with a switchable optical aperture. The demonstrated LC lens is free of disclination lines because of the presence of voltage-assisted high pretilt angles created from the upmost hole-patterned electrode with small diameter.  相似文献   

3.
ABSTRACT

We propose an adaptive nematic liquid crystal (LC) lens array using a dielectric layer with low dielectric constant as resistive layer. With the resistive layer and periodic-arranged iridium tin oxide (ITO) electrodes, the vertical electric field across the LC layer varies linearly over the lens aperture is obtained in the voltage-on state. As a result, a centrosymmetric gradient refractive index profile within the LC layer is generated, which causes the focusing behaviour. As a result of the optimisation, a thin cell gap which greatly reduces the switching time of the LC lens array can be achieved in our design. The main advantages of the proposed LC lens array are in the comparatively low operating voltage, the flat substrate surface, the simple electrodes, and the uniform LC cell gap. The simulation results show that the focal length of the LC lens array can be tuned continuously from infinity to 3.99 mm by changing the applied voltage.  相似文献   

4.
Lenses with a homogeneously aligned liquid crystal having a Fresnel structure have been prepared by using a nematic with a positive dielectric anisotropy. Their focal length can be varied continuously from the value fe for an extraordinary ray to fo for an ordinary ray by applying an electric field across the lens cell. The effective refractive index of the lens where the director is aligned perpendicular to the grooves of the Fresnel structure becomes smaller than when the director is aligned parallel to the grooves. Then the liquid crystal lens has a characteristic aberration which could not be observed in a conventional glass lens; that is, the focal length of the lens becomes different according to the incidence of rays on the different parts of the lens. The properties of the liquid crystal lens can be improved by making the director orientation axially symmetric, in the form of a concentric circle, but the polarization component rotated 90° from the incident extraordinary ray appears when the voltage is applied across the lens cell. This phenomenon is discussed in relation to the optical properties and the director orientation in a liquid crystal prism cell.  相似文献   

5.
A polarisation-free blue phase liquid crystal (BPLC) lens with enhanced tunable focal length range is proposed. A matched conventional glass lens is introduced on a BPLC lens to increase the range of the tunable focal length. The focal length of the BPLC lens can be switched from positive to negative, the negative lens-like phase profile can be neutralised by the conventional glass lens to get an infinity focal length and the positive lens-like phase profile can be enhanced by the conventional glass lens to get a shorter focal length. The minimum focal length can be decreased to almost half of that after the proposed method is adopted in our simulation. Moreover, the proposed BPLC lens exhibits a good polarisation-free feature and the optical effect is relatively good.  相似文献   

6.
Lenses with a homogeneously aligned liquid crystal having a Fresnel structure have been prepared by using a nematic with a positive dielectric anisotropy. Their focal length can be varied continuously from the value fe for an extraordinary ray to f o for an ordinary ray by applying an electric field across the lens cell. The effective refractive index of the lens where the director is aligned perpendicular to the grooves of the Fresnel structure becomes smaller than when the director is aligned parallel to the grooves. Then the liquid crystal lens has a characteristic aberration which could not be observed in a conventional glass lens; that is, the focal length of the lens becomes different according to the incidence of rays on the different parts of the lens. The properties of the liquid crystal lens can be improved by making the director orientation axially symmetric, in the form of a concentric circle, but the polarization component rotated 90° from the incident extraordinary ray appears when the voltage is applied across the lens cell. This phenomenon is discussed in relation to the optical properties and the director orientation in a liquid crystal prism cell.  相似文献   

7.
A liquid crystal (LC) alignment technique has been developed that allows local control of the polar pretilt angle over the range of 0–90°. This was achieved through the formation of a polymer network localised in the vicinity of the LC cell substrates. The network was formed as a result of in situ UV-induced polymerisation of a photo-reactive monomer added at concentrations of 0.5–1%. Localisation of the polymer network at the LC–substrate boundary was achieved by the application of a high voltage before polymerisation. The resultant pretilt angle was determined by the voltage applied during the polymerisation and/or the duration of the voltage application before the polymerisation step. The desired pretilt angle could be set over a small area of the sample, which allows the fabrication of LC devices with spatially variable optical retardation. Using this method we fabricated a converging lens, a bi-prism, and a phase diffraction grating with resolution greater than 50 lines mm?1.  相似文献   

8.
ABSTRACT

We demonstrate an image system with an optical image stabilisation using a droplet manipulation on a liquid crystal (LC) and polymer composite film (LCPCF) to reduce motion blur while preserve image quality. Such an image system adopts a liquid lens on an LCPCF and the mechanism is on a basis of droplet movement on LCPCF whose position changes because electrically tunable orientations of LC molecules on the surface of LCPCF. The change of position of the liquid lens compensates the deviation of light as the image system is under a handshake vibration. As a result, the image system under handshake vibrations could keep a clear image. The operating principles are introduced, and the experiments are performed and discussed. The concept in this paper can also be extended to design other optical components for modulating direction of light.  相似文献   

9.
Hwang H  Choi YJ  Choi W  Kim SH  Jang J  Park JK 《Electrophoresis》2008,29(6):1203-1212
This paper reports a lens-integrated liquid crystal display (LCD)-based optoelectronic tweezers (OET) system for interactive manipulation of polystyrene microspheres and blood cells by optically induced dielectrophoretic force. When a dynamic image pattern is projected into a specific area of a photoconductive layer in an OET, virtual electrodes are generated by spatially resolved illumination of the photoconductive layer, resulting in dielectrophoresis of microparticles suspended in the liquid layer under nonuniform electric field. In this study, the simple-structured OET system has been easily constructed with an OET device, an LCD and a condenser lens integrated in a conventional microscope. By using a condenser lens, both stronger dielectrophoretic forces and higher virtual electrode resolution than previously reported lens-less LCD-based OET platform are obtained. The effects of blurred LCD image and liquid chamber height on the performances of optoelectronic particle manipulation are investigated by measuring the bead velocities according to their sizes. An interactive control program for OET-based microparticle manipulation is also developed by Flash language. The integrated system is successfully applied to the parallel and interactive manipulation of red and white blood cells. Due to its simple structures, cheap manufacturing costs, and high performances, this new LCD-based OET platform may be a widely usable integrated system for optoelectronic manipulation of microparticles including living cells.  相似文献   

10.
This paper elucidates the means to control precisely the morphology of electrospun liquid crystal/polymer fibers formed by phase separation. The relative humidity, solution parameters (concentration, solvent), and the process parameter (feed rate) were varied systematically. We show that the morphology of the phase‐separated liquid crystal can be continuously tuned from capsules to uniform fibers with systematic formation of beads‐on‐a‐string structured fibers in the intermediate ranges. In all cases, the polymer forms a sheath around a liquid‐crystal (LC) core. The width of the polymer sheath and the diameter of the LC core increase with increasing feed rates. This is similar to the results obtained by coaxial electrospinning. Because these fibers retain the responsive properties of liquid crystals and because of their large surface area, they have potential applications as thermo‐, chemo‐, and biosensors. Because the size and shape of the liquid‐crystal domains will have a profound effect on the performance of the fibers, our ability to precisely control morphology will be crucial in developing these applications.  相似文献   

11.
Two‐phase systems which can be switched electrically between a light scattering and a transparent state can be prepared based on either a dispersion of well‐defined sub‐micron sized crosslinked polymeric particles in a liquid crystal (LC) matrix (Polymer Filled Nematics, PFN's) or on a dispersion of palmitoyl‐functionalised poly(propylene imine) dendrimers in an LC (Dendrimer Filled Nematics). The present paper describes the preparation of both systems and their properties. The PFN's can be electrically switched between a scattering and a transparent state by an appropriate choice of materials and refractive indices. The preparation of the disperse polymeric phase is separated from the preparation of the polymer/LC blend, which enables control over the morphology of the system. Rather surprisingly, it is found that, due to the rheological properties of the PFN blends, stable films of the blends can be simply produced by conventional coating processes. The dendrimer‐stabilised nematics require extremely low switching voltages to switch from a scattering to a highly transparent state. Moreover, the switching process is totally reversible and hysteresis effects appear to be absent.  相似文献   

12.
We propose a novel method to fabricate a uniaxially homogeneous alignment of liquid crystal (LC) molecules without using a conventional alignment layer such as polyimide film. The method produces the polymer alignment layer (PAL) by polymerisation of the monomer including in the LC layer above the TNI of the LC material. The fringe-field switching (FFS) mode LC cell with the PAL (FFS-PAL-LC cell) produced from the monomer 4,4?-di-mehacryloyl-oxy chalcone (4,4?-DMOCh) exhibited enough level of alignment state and electro-optical property compared with the FFS-LC cell having the conventional polyimide-type alignment layer. We can expect that the FFS-PAL-LC cell is useful for next-generation displays such as flexible liquid crystal displays (LCDs) because the method does not need high-temperature process of over 200°C.  相似文献   

13.
We propose the use of a varied-line-spacing (VLS) holographic polymer-dispersed liquid crystal (H-PDLC) Bragg grating as a switchable image splitter to generate a compatible three-dimensional (3D) stereogram and to increase the viewing angle of the observer. To fabricate the VLS grating, a cylindrical lens is adopted to form a cylindrical wave, which interferes with a plane wave, generating an H-PDLC grating with a continuously varying period. The proposed holographic optical element (HOE)-based image splitter comprises two VLS H-PDLC gratings. It can be attached on a designed pattern, with two rectangles taking the place of conventional liquid crystal display panel pixels, and can separate them into right and left viewing fields with a wider range. Experimental results show that the movement of the eyes of the observer can reach 37.6 mm. A theoretical simulation indicates that a shorter focal length of the cylindrical lens can yield a larger movement range. Switching between two-dimensional and 3D modes can be performed by applying an external alternating-current voltage at ~80 V. The contrast ratio of the diffracted images induced by crosstalk is greater than 60%, which indicates the feasibility of the proposed HOE for 3D image splitting.  相似文献   

14.
HyungKi Hong 《Liquid crystals》2013,40(9):1055-1061
The electric-field-driven liquid crystal lens (ELC) induces the lens effect by the spatially non-uniform distribution of the refractive index. A scheme to analyse the performance of the ELC lens for the lights of various incident angles is devised by the calculation of the phase through the ELC lens and the determination of light ray directions from these phases. The calculated results show that the ELC lens changes the incident light of the plane wave into a focused wave and the focal distance becomes shorter for larger incident angles.  相似文献   

15.
Abstract

A homogeneously aligned nematic liquid crystal cell with a hole-patterned electrode and with an indium-tin oxide (ITO-) coated counter-electrode has been prepared. A non-uniform electric field can be produced by the asymmetrical electrode structure. The liquid crystal director can be reoriented by applying a voltage across the electrodes, and this produces an axially symmetrical profile of the refractive index. This liquid crystal cell is expected to have a lens effect and so its optical properties have been investigated. The profile of the output light intensity was measured by using a detecting system with an optical fibre. Some relationships between the lens properties, the diameter of the hole and the thickness of the liquid crystal layer have been examined. The liquid crystal cell becomes a convex (converging) lens with a relatively low voltage. A focal length of several millimetres can be obtained by applying voltages of 3-4 V. As the applied voltage increases, the focal length becomes longer, and the cell changes to a concave (diverging) lens when a high voltage is applied (? 20 V). These properties are discussed from the viewpoint of the director orientation effects resulting from the non-uniform electric fields in the cell.  相似文献   

16.
The response mechanism of a vertical alignment mode, driven by a fringe field, is investigated in detail using small-angle approximation. The flow effects can be ignored when using theoretical analysis. The period of the liquid crystal (LC) deformation in the transversal direction, instead of the lognitudinal direction, shows the cell gap effect on the response time in the LC layer's thickness. The authors' analytical results indicate that a liquid crystal display (LCD) mode with a small transversal period could provide a new method that gives a fast response.  相似文献   

17.
A liquid crystal microlens obtained with a non-uniform electric field   总被引:1,自引:0,他引:1  
A homogeneously aligned nematic liquid crystal cell with a hole-patterned electrode and with an indium-tin oxide (ITO-) coated counter-electrode has been prepared. A non-uniform electric field can be produced by the asymmetrical electrode structure. The liquid crystal director can be reoriented by applying a voltage across the electrodes, and this produces an axially symmetrical profile of the refractive index. This liquid crystal cell is expected to have a lens effect and so its optical properties have been investigated. The profile of the output light intensity was measured by using a detecting system with an optical fibre. Some relationships between the lens properties, the diameter of the hole and the thickness of the liquid crystal layer have been examined. The liquid crystal cell becomes a convex (converging) lens with a relatively low voltage. A focal length of several millimetres can be obtained by applying voltages of 3-4 V. As the applied voltage increases, the focal length becomes longer, and the cell changes to a concave (diverging) lens when a high voltage is applied (≳ 20 V). These properties are discussed from the viewpoint of the director orientation effects resulting from the non-uniform electric fields in the cell.  相似文献   

18.
Without the conventional polymer‐based liquid crystal (LC) alignment process, a newly synthesized dual photo‐functionalized amphiphile (abbreviated as ADMA1) was successfully applied as a robust photo‐reversible LC alignment layer by self‐assembly and photo‐polymerization. The LC alignment layer constructed by directly adding dual photo‐functionalized amphiphiles into LC media significantly cuts the manufacturing cost as well as opens new doors for the fabrication of novel electro‐optical devices.  相似文献   

19.
We propose a new approach for the production of thin film optical functional materials. The method is based on molecular design whereby two different types of lyotropic liquid crystals (LC), lyotropic LC based on columnar supramolecules and water-soluble rod-like polymer molecules are mixed. The resulting lyotropic guest–host system allows production of optical retardation films with tunable optical anisotropy controlled by composition of the guest–host system. Coatable retarders can be used in modern liquid crystal displays and TVs for optical compensation and enhancement of the LCD's performance.  相似文献   

20.
Self-assembled monolayers (SAMs) are a unique approach for the liquid crystal (LC) alignment in electro-optical applications such as displays. Herein, a new methodology for photo-switchable LC alignment layer using an azosilane monomer and LC mixture system in the absence of any other foreign alignment layer is presented. The azosilane monomer spontaneously separated from the host LCs, and formed a stable monolayer network on the substrate surface. Data from X-ray photo-electron spectroscopy (XPS), spectroscopic elipsometry (SE), water contact angle and LC alignment studies confirmed that, in the azosilane and LC mixture system, azosilane makes an in situ SAM that is capable of photo-switchable LC alignment layer on glass and indium tin oxide (ITO) substrates. The LCs are aligned with respect to change in the photo-isomerisation of the azo molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号