首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modification of the differential maximum bubble pressure method for determining surface tensions is described. In this method, surface tension is calculated from the difference between maximum bubble pressures reached at capillaries of differing internal radii, vertically displaced by an amount calculated from the theory of Cuny and Wolf (1956) Ann Physik 17:57). The density dependence of the technique is eliminated and surface tension becomes a truly linear function of the differential maximum bubble pressure, which is easily measured. The absolute measuring technique is illustrated for equilibrium and dynamic surface tensions of a series of pure liquids and aqueous solutions.For dynamic measurements on surfactant solutions some important experimental considerations and limitations are described. In particular, a previously unrecognized source of error in estimating bubble surface ages is identified. It was found that the maximum bubble pressure for a large capillary does not immediately precede the detachment of the bubble, but occurs at one-third the overall bubble period. Thus, for large capillaries, subsequent to attaining the maximum bubble pressure, there exists a significant decay time in addition to the dead time. In general, surface ages corresponding to maximum pressure at small and large capillaries bubbling with the same period are not equal. This can lead to a large error in dynamic and equilibrium surface tensions of surfactant solutions. With suitable correction the technique is capable of measuring absolute surface tension, even for quite slowly equilibrating surfactant solutions.  相似文献   

2.
Exact knowledge of the dead time as part of the bubble lifetime in the maximum bubble pressure method is an important prerequisite for accurate dynamic surface tension measurements. The duration of the dead time depends essentially on the capillary geometry and affects significantly the measured surface tensions of concentrated surfactant solutions. Increase of the dead time leads to a significant surface tension decrease of a freshly formed bubble surface due to the significantly higher residual adsorption of the surfactant molecules. It is shown that correct dynamic surface tensions are obtained with the experimental procedure of Sugden's method only when in addition to the fixed frequency of bubble formation, also the dead time values for the two capillaries are kept constant.  相似文献   

3.
The interaction of pairs of bubbles with equal diameters grown on adjacent capillaries in aqueous magnesium sulfate solutions is observed for varying electrolyte concentrations and bubble diameters. As in previous investigations, a sharp transition from coalescence to bubble detachment without coalescence is observed with increasing electrolyte concentration. The critical electrolyte concentration for this transition is found to increase with decreasing bubble diameter for bubble diameters of 1.4 to 4.2 mm.  相似文献   

4.
The kinetics of the surface tension of micellar solutions of nonionic surfactant Triton X-100 is measured experimentally by means of three different techniques: oscillating jet, maximum bubble pressure and inclined plate. They allow to study the micellization kinetics at various time scales (from a few milliseconds to a few seconds) in fairly large concentration region up to 50 times CMC. The experimental data are satisfactorily explained by a theoretical model accounting for the kinetics of micellization, diffusion of surfactant species and expansion of the bubble interface. By this model are computed the characteristic times of diffusion and micellization, which are of comparable magnitude (about 5 to 200 ms), and the Gibbs' elasticity. The micellization time constant corresponds to the slow relaxation process known to coincide with the disintegration of micelles. Comparing our data with other data from literature one can conclude that more realistic information for the micellization kinetics is obtained by the maximum bubble pressure and the oscillating jet method. The inclined plate seems too slow to measure the relaxation processes in micellar solutions of this surfactant.  相似文献   

5.
This paper is concerned with the detachment of particles from coalescing bubble pairs. Two bubbles were generated at adjacent capillaries and coated with hydrophobic glass particles of mean diameter 66 μm. The bubbles were then positioned next to each other until the thin liquid film between them ruptured. The particles that dropped from the bubble surface during the coalescence process were collected and measured. The coalescence process was very vigorous and observations showed that particles detached from the bubble surfaces as a result of the oscillations caused by coalescence. The attached particles themselves and, to some extent the presence of the surfactant had a damping affect on the bubble oscillation, which played a decisive role on the particle detachment phenomena. The behaviour of particles on the surfaces of the bubbles during coalescence was described, and implications of results for the flotation process were discussed.  相似文献   

6.
The sonication of an aqueous solution generates cavitation bubbles, which may coalesce and produce larger bubbles. This paper examines the effect of surface-active solutes on such bubble coalescence in an ultrasonic field. A novel capillary system has been designed to measure the change in the total volume resulting from the sonication of aqueous solutions with 515 kHz ultrasound pulses. This volume change reflects the total volume of larger gas bubbles generated by the coalescence of cavitation bubbles during the sonication process. The total volume of bubbles generated is reduced when surface-active solutes are present. We have proposed that this decrease in the total bubble volume results from the inhibition of bubble coalescence brought about by the surface-active solutes. The observed results revealed similarities with bubble coalescence data reported in the literature in the absence of ultrasound. It was found that for uncharged and zwitterionic surface-active solutes, the extent of bubble coalescence is affected by the surface activity of the solutes. The addition of 0.1 M NaCl to such solutes had no effect on the extent of bubble coalescence. Conversely, for charged surface-active solutes, the extent of bubble coalescence appears to be dominated by electrostatic effects. The addition of 0.1 M NaCl to charged surfactant solutions was observed to increase the total bubble volume close to that of the zwitterionic surfactant. This suggests the involvement of electrostatic interactions between cavitation bubbles in the presence of charged surfactants in the solution.  相似文献   

7.
A planar or spherical fluid-liquid interface was commonly assumed on studying the surfactant adsorption kinetics for a pendant bubble in surfactant solutions. However, the shape of a pendant bubble deviates from a sphere unless the bubble's capillary constant is close to zero. Up to date, the literature has no report about the shape effect on the relaxation of surface tension due to the shape difference between a pendant bubble and a sphere. The dynamic surface tension (DST), based on the actual shape of a pendant bubble with a needle, of the diffusion-controlled process is simulated using a time-dependent finite element method in this work. The shape effect and the existence of a needle on DST are investigated. This numerical simulation resolves also the time-dependent bulk surfactant concentration. The depth of solution needed to satisfy the classical Ward-Tordai infinite-solution assumption was also studied. For a diffusion-controlled adsorption process, bubble shape and needle size are two major factors affecting the DST. The existence of a needle accelerates the bulk diffusion for a small bubble; however, the shape of a large pendant bubble decelerates the bulk diffusion. An example using this method on the DST data of C12E4 is illustrated at the end of this work.  相似文献   

8.
The pendant bubble method is commonly used to measure the evolution of the surface tension of surfactant solutions. Initially, the bubble interface is free of adsorbed surfactant. As time progresses, surfactant diffuses to the interface, adsorbs, and reduces the surface tension. The surface tension is assumed to be in equilibrium with the instantaneous surface concentration. Therefore, surface tension data are analyzed in terms of interfacial thermodynamics and mass transfer models in order to infer the mechanisms which determine the surfactant transport. Diffusion from the bulk solution to the bubble can be approximated as diffusion to a spherical interface. Approximating this process as diffusion to a plane introduces significant errors into the data analysis. Mass transfer to a sphere differs from that to a plane; the equilibration of the spherical interface is more rapid simply because of geometry. The failure to account for this effect in the interpretation of pendant bubble data can lead to serious errors in the transport coefficients for the surfactants. In the diffusion-controlled limit, surfactant diffuses to the sublayer immediately adjacent to the interface and adsorbs in local equilibrium according to the adsorption isotherm. There is a closed-form solution for Fick's law describing adsorption to a sphere in an infinite solution which reduces to the Ward and Tordai solution when the bubble radius is large. This equation, along with the adsorption isotherm relating the surface concentration and the sublayer concentration, must be solved numerically in order to solve for the time evolution of the surface concentration. At early times, the adsorption isotherm can be expanded about the clean interface state. At long times, small departures from the equilibrium state can be assumed. In these limits, asymptotic expansions can be obtained. The short- and long-time expansions are found in this study for adsorption to a sphere and compared to those obtained previously for adsorption to a planar interface. In particular, the long-time asymptote for adsorption to a sphere is proportional to t(-3/2); this asymptote differs significantly from that for adsorption to a plane, which goes as t(-1/2). The full solution for adsorption to a sphere is compared to the Ward and Tordai solution for adsorption to a planar interface. From a comparison of the full solutions, it is established that curvature cannot be neglected unless the ratio of the adsorption depth to the bubble radius is negligible. This ratio can be calculated a priori from equilibrium isotherm parameters. Using constants which describe the surfactant C(12)E(8), for which curvature plays a strong role in the surfactant adsorption dynamics, the short- and long-time solutions for adsorption to the interface are compared to the full solutions and to dynamic surface tension data to infer the range of validity of the approximations. Copyright 2001 Academic Press.  相似文献   

9.
A new class of surfactant mixtures is described, which is particularly suitable for studies related to foam dynamics, such as studies of foam rheology, liquid drainage from foams and foam films, and bubble coarsening and rearrangement. These mixtures contain an anionic surfactant, a zwitterionic surfactant, and fatty acids (e.g., myristic or lauric) of low concentration. Solutions of these surfactant mixtures exhibit Newtonian behavior, and their viscosity could be varied by using glycerol. Most importantly, the dynamic surface properties of these solutions, such as their surface dilatational modulus, strongly depend on the presence and on the chain-length of fatty acid(s). Illustrative results are shown to demonstrate the dependence of solution properties on the composition of the surfactant mixture, and the resulting effects on foam rheological properties, foam film drainage, and bubble Ostwald ripening. The observed high surface modulus in the presence of fatty acids is explained with the formation of a surface condensed phase of fatty acid molecules in the surfactant adsorption layer.  相似文献   

10.
In this article, foaming properties and dynamic interfacial properties of a series of sodium 2,5-dialkyl benzene sulfonates in aqueous solutions were carried out to elucidate the relationship between foaming properties and dynamic interfacial properties. The properties of foams generated from bubbling air through different surfactant solutions were measured using a modified Bikerman device. The dynamic surface tension and surface dilational elasticity were obtained from an image analysis technique based on the oscillating bubble method. The surfactants molecular adsorption at the air/water interface was introduced with Rosen empirical equation and the rate of adsorption was determined from measurements of the dynamic surface tension. The surfactant with the longest alkyl chain shows the lowest dynamic surface activity, which lead to the lowest foam volume. The short ortho straight alkyl chain has little effect on the arrangement of molecules at the interface and the foam stability changes a little with the changing of the ortho alkyl chain length. The foam stability is correlated with both the higher surface dilational elasticity and the larger surface monolayer strength.  相似文献   

11.
The general theoretical model by Garrett and Joos proposed in 1976 for the estimation of the dilational elasticity of mixed surfactant solutions, and also the theoretical model proposed by Joos for the limiting elasticity of such mixtures, demonstrate quite satisfactory agreement with experimental results obtained from the oscillating bubble shape method for mixtures of a nonionic surfactant and a protein, that is, beta-lactoglobuline and decyl dimethyl phosphine oxide, C10DMPO.  相似文献   

12.
The numerical simulations of bubble motion in dilute surfactant solutions reported previously by two of the authors contained a serious numerical inaccuracy. In agreement with experiments, single bubbles released from rest were predicted to reach a maximum speed before slowing to a terminal speed. However, subsequent experiments demonstrated that, in the simulations, the bubbles reached their terminal speed too quickly. The source of the discrepancy is an inaccuracy associated with the numerical algorithm used to solve the surfactant transport equation on the bubble surface. After correcting the problem, the simulations agree much better with the experiments.  相似文献   

13.
The analysis of the available bubble life times and dead times for the bubble pressure tensiometer BPA-1S shows that dynamic surface tensions can be measured also for surfactant solutions at concentrations many times higher than the corresponding CMC. For the three nonionic surfactants Triton X-100, Triton X-45, and C14EO8 experiments are performed for solutions with a concentration of up to 200 times the CMC (C14EO8). Comparison of the experimental data with micelle kinetics models yields rate constants for the fast micelle dissolution process, which are in a good agreement with values obtained by other experimental methodologies.  相似文献   

14.
A convolution-type equation has been derived to describe the behavior of a bubble under periodical pressure oscillations. This equation holds for a diffusion-controlled adsorption mechanism and small disturbances of the equilibrium state, and it describes both the established and transition regimes of bubble oscillation. Systems free of any surfactant and in the presence of a surfactant are considered. The results obtained allow all aspects of surfactant influence on the bubble oscillation resonance to be analyzed. The sharp increase in the bubble oscillation amplitude may result in bubble detachments, even at rather low harmonic pressure oscillations. The presence of surfactant can result in a depression of the resonance amplitudes. Copyright 2000 Academic Press.  相似文献   

15.
A new method combining axisymmetric drop shape analysis (ADSA) and a captive bubble (CB) is proposed to study the effect of surfactant on interfacial gas transfer. In this method, gas transfer from a static CB to the surrounding quiescent liquid is continuously recorded for a short period (i.e., 5 min). By photographical analysis, ADSA-CB is capable of yielding detailed information pertinent to the surface tension and geometry of the CB, e.g., bubble area, volume, curvature at the apex, and the contact radius and height of the bubble. A steady-state mass transfer model is established to evaluate the mass transfer coefficient on the basis of the output of ADSA-CB. In this way, we are able to develop a working prototype capable of simultaneously measuring dynamic surface tension and interfacial gas transfer. Other advantages of this method are that it allows for the study of very low surface tensions (<5 mJ/m2) and does not require equilibrium of gas transfer. Consequently, reproducible experimental results can be obtained in a relatively short time. As a demonstration, this method was used to study the effect of lung surfactant on oxygen transfer. It was found that the adsorbed lung surfactant film shows a retardation effect on oxygen transfer, similar to the behavior of a pure DPPC film. However, this retardation effect at low surface tensions is less than that of a pure DPPC film.  相似文献   

16.
The reverse flow (i.e., the efflux from glass capillaries occurring after the stop of capillary rise) of mixed aqueous solutions of nonionic (Triton X-100) and cationic (cetyl- and dodecyltrimethylammonium bromides) surfactants is studied. The effect of electrolytes (salts and acids) on the process kinetics and the wetting in these systems is investigated. Possible causes of the reverse flow are discussed. They are related to the peculiar features of the interaction of nonionic and cationic surfactants with glass and to the differences in the surfactant adsorption from quiescent and moving solutions. It is shown that the wetting by the mixed surfactant solutions, including its kinetics, can be controlled by the addition of electrolytes.  相似文献   

17.
The dilatational properties of fluid surfaces and interfaces have been comprehensively investigated in recent years. For example, an improved oscillating bubble device provided experimental results that allow for critical testing of established surface models, such as the Lucassen/van den Tempel (LvdT) model. The comparison of the LvdT model with the oscillating bubble experiments demonstrates a mismatch between the model parameters. For example, near the CMC or the limit of solubility the calculated parameters of surfactant solutions become unrealistically large. The deviation can be explained by the introduction of more detailed surface models, in particular by the modification of the effective thickness of the surface layer, its internal structure and the molecular exchange processes between these structures. For the verification of such processes an experimental setup was realized which allows for an independent determination of the instantaneous adsorption state at the surface of an oscillating bubble inside a surfactant solution. The setup utilizes the Second Harmonic Generation (SHG)--effect at the air-solution interface generated by the light of a pulsed LASER. The set-up is described in detail, and the results of a first experimental series are presented and discussed in this paper. As system, aqueous solutions of the fluortenside F381 were used.  相似文献   

18.
It has been found earlier (N.V. Churaev, G.A. Martynov, V.M. Starov, Z.M. Zorin, Colloid Polym. Sci. 259 (1981) 747) that aqueous surfactant solutions spontaneously rise in vertical hydrophobized quartz capillaries. A theory of this phenomenon is presented, which connects the experimental observations with the adsorption of surfactant molecules in front of the moving meniscus on the bare hydrophobic interface.  相似文献   

19.
20.
Problems encountered in capillary electrochromatography, i.e. non-reproducible column manufacture, bubble formation during usage, short column lifetimes and limited choice of packing particles are addressed by the development of fritless or single-frit, internally tapered, segmented and dead-volume free coupled capillary columns. The Van Deemter plots measured demonstrate the performance of these high-quality capillaries which are suitable for capillary electrochromatography as well as for capillary high-performance liquid chromatographic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号