首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A solid complex Eu(C5H8NS2)3(C12H8N2) has been obtained from reaction of hydrous europium chloride with ammonium pyrrolidinedithiocarbamate (APDC) and 1,10-phenanthroline (o-phen⋅H2O) in absolute ethanol. IR spectrum of the complex indicated that Eu3+ in the complex coordinated with sulfur atoms from the APDC and nitrogen atoms from the o-phen. TG-DTG investigation provided the evidence that the title complex was decomposed into EuS. The enthalpy change of the reaction of formation of the complex in ethanol, Δr H m θ(l), as –22.214±0.081 kJ mol–1, and the molar heat capacity of the complex, c m, as 61.676±0.651 J mol–1 K–1, at 298.15 K were determined by an RD-496 III type microcalorimeter. The enthalpy change of the reaction of formation of the complex in solid, Δr H m θ(s), was calculated as 54.527±0.314 kJ mol–1 through a thermochemistry cycle. Based on the thermodynamics and kinetics on the reaction of formation of the complex in ethanol at different temperatures, fundamental parameters, including the activation enthalpy (ΔH θ), the activation entropy (ΔS θ), the activation free energy (ΔG θ), the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A) and the reaction order (n), were obtained. The constant-volume combustion energy of the complex, Δc U, was determined as –16937.88±9.79 kJ mol–1 by an RBC-II type rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, Δc H m θ, and standard enthalpy of formation, Δf H m θ, were calculated to be –16953.37±9.79 and –1708.23±10.69 kJ mol–1, respectively.  相似文献   

2.
The initial reaction rate (V 0) for the esterification reaction of feruloyl esterase (FAE-II) at different temperatures (288, 298, 308, 318, 328, 338, 348, and 358 K) and various ethyl ferulate concentrations [(2, 4, 6, 8, 10, 12, 14, and 16) × 10−4 mol l−1 of ethyl ferulate in water] were determined. The Lineweaver-Burk double reciprocal plot yielded the kinetic parameters (maximal velocity V max, Michaelis constant K m, and second order rate constant V/K). The effects of temperature on those 3 kinetic parameters were presented and discussed. The thermodynamic parameters ΔH* (enthalpy of activation), ΔG* (free energy of activation), ΔS* (entropy of activation), ΔG E-S (free energy change of substrate binding), ΔG E-T (free energy change of transition state formation), related to that biochemical process were determined and discussed from van’t Hoff plot, Arrhenius plot, and Eyring plot.  相似文献   

3.
Excess molar volumes (V E), viscosities, refractive index, and Gibbs energies were evaluated for binary biodiesel + benzene and toluene mixtures at 298.15 and 303.15 K. The excess molar volumes V E were determined from density, while the excess Gibbs free energy of activation G*E was calculated from viscosity deviation Δη. The excess molar volume (V E), viscosity deviation (Δη), and excess Gibbs energy of activation (G*E) were fitted to the Redlich-Kister polynomial equation to derive binary coefficients and estimate the standard deviations between the experimental data and calculation results. All mixtures showed positive V E values obviously caused by increased physical interactions between biodiesel and the organic solvents.  相似文献   

4.
The Eupatorium odoratum leaf peroxidase exists as at least seven distinct isozymes (three cationic, three anionic, and one neutral). These isozymes were identified and separated by preparative iso-electric focusing. Thermal stability, including the activation enthalpy (ΔH *), free energy of inactivation (ΔG *) and activation entropy (ΔS *), and kinetic studies of two isozymes, one having a pI of 5.0 (E5) and another one having a pI of 7.0 (E7) with mol mass of 43 and 50 kD, respectively, were studied in detail. Of the molecular weight of E5 and E7, 25 and 32% correspond to the carbohydrate content of the isozymes. Optimal pH was in the acidic range of 3.6–3.8 for E5 and 3.8 for E7 with the oxidation of ABTS. E7 and E5 showed activation energy for inactivation, 194.8 and 145.4 kJ/mol, respectively. Both the isozymes showed distinct substrate specificity. The catalytic specificity constant for E5 and E7 were 112×105 and 124×105/s·M, respectively, when 2,2′-azino-bis-(3-ethylbenz-thiazoline-6 sulfonic acid) was used as the substrate. Maximum affinity (i.e., lowest K m value) to H2O2 was shown by E5 and E7 along with Pyrogallol and was 0.02 and 0.05/s·M, respectively.  相似文献   

5.
The novel ternary solid complex Gd(C5H8NS2)3(C12H8N2) has been obtained from the reaction of hydrous gadolinium chloride, ammonium pyrrolidinedithiocarbamate (APDC), and 1,10-phenanthroline (o-phen · H2O) in absolute ethanol. The complex was described by an elemental analysis, TG-DTG, and an IR spectrum. The enthalpy change of the complex formation reaction from a solution of the reagents, Δr H m ϑ (sol), and the molar heat capacity of the complex, c m , were determined as being − 15.174 ± 0.053 kJ/mol and 72.377 ± 0.636 J/(mol K) at 298.15 K by using an RD496-III heat conduction microcalorimeter. The enthalpy change of a complex formation from the reaction of the reagents in a solid phase, Δr H m ϑ (s), was calculated as being 52.703 ± 0.304 kJ/mol on the basis of an appropriate thermochemical cycle and other auxiliary thermodynamic data. The thermodynamics of the formation reaction of the complex was investigated by the reaction in solution. Fundamental parameters, the activation enthalpy (ΔH ϑ ), the activation entropy (ΔS ϑ ), the activation free energy (ΔG ϑ ), the apparent reaction rate constant (k), the apparent activation energy (E), the preexponential constant (A), and the reaction order (n), were obtained by the combination of the thermochemical data of the reaction and kinetic equations, with the data of thermokinetic experiments. The constant-volume combustion energy of the complex, Δc U, was determined as being −17588.79 ± 8.62 kJ/mol by an RBC-II type rotatingbomb calorimeter at 298.15 K. Its standard enthalpy of combustion, Δc H m ϑ , and standard enthalpy of formation, Δf H m ϑ , were calculated to be −17604.28 ± 8.62 and −282.43 ± 9.58 kJ/mol, respectively. The text was submitted by the authors in English.  相似文献   

6.
Thermal behavior of 1,2,3-triazole nitrate   总被引:1,自引:0,他引:1  
The thermal decomposition behaviors of 1,2,3-triazole nitrate were studied using a Calvet Microcalorimeter at four different heating rates. Its apparent activation energy and pre-exponential factor of exothermic decomposition reaction are 133.77 kJ mol−1 and 1014.58 s−1, respectively. The critical temperature of thermal explosion is 374.97 K. The entropy of activation (ΔS ), the enthalpy of activation (ΔH ), and the free energy of activation (ΔG ) of the decomposition reaction are 23.88 J mol−1 K−1, 130.62 kJ mol−1, and 121.55 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 368.65 K. The specific heat capacity was determined by a Micro-DSC method and a theoretical calculation method. Specific heat capacity equation is C\textp ( \textJ mol - 1 \text K - 1 ) = - 42.6218 + 0.6807T C_{\text{p}} \left( {{\text{J mol}}^{ - 1} {\text{ K}}^{ - 1} } \right) = - 42.6218 + 0.6807T (283.1 K < T < 353.2 K). The adiabatic time-to-explosion is calculated to be a certain value between 98.82 and 100.00 s. The critical temperature of hot-spot initiation is 637.14 K, and the characteristic drop height of impact sensitivity (H 50) is 9.16 cm.  相似文献   

7.
Summary. Density (ρ) and viscosity (η) values of the binary mixtures of DMP + 1-pentanol, 1-butanol, and 1-propanol over the entire range of mole fraction at 298.15 and 303.15 K were measured in atmospheric pressure. The excess molar volume (V E), viscosity deviations (Δη), and excess Gibbs energy of activation for viscous flow (G*E) were calculated from the experimental measurements. These results were fitted to Redlich–Kister polynomial equation to estimate the binary interaction parameters. The viscosity data were correlated with equations of McAllister. The calculated functions have been used to explain the intermolecular interaction between the mixing components.  相似文献   

8.
Summary The trans-[Co(meen)2Cl2]Cl complex was prepared and characterized by elemental analysis, and u.v.-vis. and i.r. spectroscopies. The kinetics of the primary aquation of trans-[Co(meen)2Cl2]+ in H2O and H2O-MeOH have been investigated over a wide range of solvent compositions and temperatures (45–60 °C). Plots of rate constants (log k) versus the reciprocal of the dielectric constant of the medium (D infs sup−1 ) and Grunwald-Winstein values of the solvent (Y) were non-linear. The variation of enthalpies (ΔH *) and entropies (ΔS *) of activation with solvent composition have been determined. Plots of ΔH * or ΔS * versus the mole fraction of the solvent exhibit a maximum at x 2 ca. 0.1 and a minimum of x 2 ca. 0.3; a linear plot of ΔH * versus ΔS * is obtained. Furthermore, the cycle relating the free energy of activation in H2O to that in H2O-MeOH shows that changes in the solvent structure in H2O-MeOH mixtures generally stabilize the five-coordinate cation in the transition state, more than the cation in the initial state as the mole fraction of MeOH increases. The results are discussed and compared with other related systems.  相似文献   

9.
Modified Sorrel’s cement was prepared by the addition of ferric chloride. The modified cement (MF5) was analyzed and characterized by different methods. Adsorption of Gd(III) and U(VI) ions in carbonate solution has been studied separately as a function of pH, contact time, adsorbent weight, carbonate concentration, concentration of Gd(III) and U(VI) and temperature. From equilibrium data obtained, the values of Δ H, Δ S and Δ G were found to equal −30.9 kJ ⋅ mol−1, −85.4 J ⋅ mol−1 ⋅,K−1, and −5.4 KJ ⋅ mol−1, respectively, for Gd(III) and 18.9 kJ ⋅ mol−1, 67.8 J ⋅ mol−1 K−1 and −1.3 KJ ⋅ mol−1, respectively, for U(VI). The equilibrium data obtained have been found to fit both Langmuir and Freundlich adsorption isotherms. The batch kinetic of Gd(III) and U(VI) on modified Sorrel’s cement (MF5) with the thermodynamic parameters from carbonate solution were studied to explain the mechanistic aspects of the adsorption process. Several kinetic models were used to test the experimental rate data and to examine the controlling mechanism of the adsorption process. Various parameters such as effective diffusion coefficient and activation energy of activation were evaluated. The adsorption of Gd(III) and U(VI) on the MF5 adsorbent follows first-order reversible kinetics. The forward and backward constants for adsorption, k 1and k 2 have been calculated at different temperatures between 10 and 60C. Form kinetic study, the values of Δ H * and Δ S * were calculated for Gd(III) and U(VI) at 25C. It is found that Δ H * equals −14.8 kJmol−1 and 7.2 kJmol−1 for Gd(III) and U(VI), respectively, while Δ S * were found equal −95.7 Jmol−1K−1 and −70.5 Jmol−1K−1 for Gd(III) and U(VI), respectively. The study showed that the pore diffusion is the rate limiting for Gd(III) and (VI).  相似文献   

10.
A closed oscillation system comprised of alanine, KBrO3, H2SO4 and acetone catalyzed by tetraazamacrocyclic nickel(II) complex is introduced, and quantitatively characterized with kinetic parameters, namely the rate constant (k in, k p), the apparent activation energy (E in, E p) and pre-exponential constant (A in, A p) and thermodynamic functions (ΔH in, ΔG in, ΔS in and ΔH p, ΔG p, ΔS p), where indexes “in” and “p” mean “induction period” and “oscillation period,” respectively. The results indicate that tetraazamacrocyclic nickel(II) complex can catalyze alanine oscillating reaction and the reaction corresponds exactly to the feature of irreversible thermodynamics as the entropy of system is negative.  相似文献   

11.
Monomeric extracellular endoglucanase (25 kDa) of transgenic koji (Aspergillus oryzae cmc-1) produced under submerged growth condition (7.5 U mg−1 protein) was purified to homogeneity level by ammonium sulfate precipitation and various column chromatography on fast protein liquid chromatography system. Activation energy for carboxymethylcellulose (CMC) hydrolysis was 3.32 kJ mol−1 at optimum temperature (55 °C), and its temperature quotient (Q 10) was 1.0. The enzyme was stable over a pH range of 4.1–5.3 and gave maximum activity at pH 4.4. V max for CMC hydrolysis was 854 U mg−1 protein and K m was 20 mg CMC ml−1. The turnover (k cat) was 356 s−1. The pK a1 and pK a2 of ionisable groups of active site controlling V max were 3.9 and 6.25, respectively. Thermodynamic parameters for CMC hydrolysis were as follows: ΔH* = 0.59 kJ mol−1, ΔG* = 64.57 kJ mol−1 and ΔS* = −195.05 J mol−1 K−1, respectively. Activation energy for irreversible inactivation ‘E a(d)’ of the endoglucanase was 378 kJ mol−1, whereas enthalpy (ΔH*), Gibbs free energy (ΔG*) and entropy (ΔS*) of activation at 44 °C were 375.36 kJ mol−1, 111.36 kJ mol−1 and 833.06 J mol−1 K−1, respectively.  相似文献   

12.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

13.
The thermal decomposition behavior of 3,4,5-triamino-1,2,4-triazole dinitramide was measured using a C-500 type Calvet microcalorimeter at four different temperatures under atmospheric pressure. The apparent activation energy and pre-exponential factor of the exothermic decomposition reaction are 165.57 kJ mol−1 and 1018.04 s−1, respectively. The critical temperature of thermal explosion is 431.71 K. The entropy of activation (ΔS ), enthalpy of activation (ΔH ), and free energy of activation (ΔG ) are 97.19 J mol−1 K−1, 161.90 kJ mol−1, and 118.98 kJ mol−1, respectively. The self-accelerating decomposition temperature (T SADT) is 422.28 K. The specific heat capacity of 3,4,5-triamino-1,2,4-triazole dinitramide was determined with a micro-DSC method and a theoretical calculation method. Specific heat capacity (J g−1 K−1) equation is C p = 0.252 + 3.131 × 10−3  T (283.1 K < T < 353.2 K). The molar heat capacity of 3,4,5-triamino-1,2,4-triazole dinitramide is 264.52 J mol−1 K−1 at 298.15 K. The adiabatic time-to-explosion of 3,4,5-triamino-1,2,4-triazole dinitramide is calculated to be a certain value between 123.36 and 128.56 s.  相似文献   

14.
In order to investigate relative reactivity of different oxidants in solid-state reactions of pyrotechnic mixtures, thermal properties of Sn + Sr(NO3)2, Sn + Ba(NO3)2, and Sn + KNO3 pyrotechnic systems have been studied by means of TG, DTA, and DSC methods and the results compared with those of pure oxidants. The apparent activation energy (E), ΔG #, ΔH #, and ΔS # of the combustion processes were obtained from the DSC experiments. The results showed that the nature of oxidant has a significant effect on ignition temperature, and the kinetic of the pyrotechnic mixtures’ reactions, and the relative reactivity of these mixtures was found to obey in the following order: Sn + Sr(NO3)2 > Sn + Ba(NO3)2 > Sn + KNO3.  相似文献   

15.
A critical analysis of the use of an overall single rate reaction equation instead of the true rate equation corresponding to a complex process consisting in two consecutive reactions is presented. In accordance with this approximation, often used in the kinetic analysis of the system in which several reactions take place, the overall process is described by the apparent activation parameters (the apparent activation energy, E ap, and the apparent pre-exponential factor, A ap) and the apparent conversion function. The theoretical isotherms (α=α(t), where a is the conversion degree and t is the time) have been simulated for a system in which two consecutive reactions occur. In this case, the apparent activation parameters depends on: (a) the considered range of the temperature; (b) the temperature, for a given conversion degree. It is shown that the apparent activation parameters are corrrelated by the compensation effect relationship: lnA ap=α*+β*E ap where α* and β* are the parameters of the linear regression. The possibility of using the apparent kinetic parameters to predict the isotherms α=α(t) for temperatures lower than those for which these parameters were evaluated, is discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
With the help of the kinetic parameters (the rate constant (k in k p) and the apparent activation energy (E in E p) of the oscillatory induction period and oscillation period) of the oscillating reaction using thirteen amino acids, leucine (Leu), threonine (Thr), arginine (Arg), lysine (Lys), histidine (His), alanine (Ala), glutamine (Glu), glycine (Gly), methionine (Met), cystine (Cys), tryptophan (Trp), serine (Ser) and tyrosine (Tyr), as organic substrates in amino acid-BrO3-Mn2+-H2SO4-acetone system, then based on the Oregonator model and the thermodynamics theory on irreversible process, the thermodynamic function (ΔH in, ΔG in, ΔS in and ΔH p, ΔG p, ΔS p) of these oscillating system are studied. The results indicate the entropy ΔS of these oscillating reaction are negative, thereby it is proved that the oscillating reaction is a noequilibrium system with dissipation structure in agreement with the character of the oscillating reaction from disorder to order in irreversible thermodynamics. These are satisfactorily to explain the experimental phenomena.  相似文献   

17.
The molar conductivities (Λ) of solutions of n-tetrabutylammonium tetraphenylborate (NBu4BPh4) in 3-pentanone have been measured in the temperature range from 283.15 to 329.15 K. The conductance data have been analyzed using the Lee-Wheaton conductivity equation with the distance parameter (a) set at Bjerrum’s pairing distance, and the limiting molar conductivities (Λo) and the association equilibrium constants (K A) have been derived. The limiting ion conductivities (λ_±o) have been evaluated according to the method of Krumgalz. The λ+ o values have been compared with λ+ o values calculated from the empirical equation of Gill. The thermodynamic functions, Gibbs energy (Δ G A o), enthalpy (Δ H A o) and entropy (Δ S A o) for the process of ion-pair formation as well as the activation energy of the ionic movement (ΔH ) have been evaluated. The obtained results are discussed in terms of ion-ion and ion-solvent interactions.  相似文献   

18.
Densities (ρ) and viscosities (η) of different strengths of magnesium sulphate (MgSO4) in varying proportions of formamide (FA) + ethylene glycol as mixed solvents were measured at room temperature. The experimental values of ρ and η were used to calculate the values of the apparent molar volume, (φ1,), partial molar volume, (φ1,) at infinite dilution,A- andB-coefficients of the Jones-Dole equation and free energies of activation of viscous flow, (Δμ 1 0* ) and (Δμ 2 0* ), per mole of solvent and solute respectively. The behaviour of these parameters suggests strong ion-solvent interactions in these systems and also that MgSO4 acts as structure-maker in FA + ethylene glycol mixed solvents.  相似文献   

19.
The complexes formed by the chemically modified chloromethylated poly(styrene)-PAN (CMPS-PAN) as a resin chelating ion exchanger were characterized by infrared and potentiometry. The thermal degradation of pure CMPS-PAN resin and its complexes with Au3+, Cr3+, Cu2+, Fe3+, Mn2+ and Pt4+ in air atmosphere has been studied using thermal gravimetry (TG) and derivative thermal gravimetry (DTG). The results showed that four different steps accompany the decomposition of CMPS-PAN resin and its complexes with the metal ions. These stages were affected by the presence of the investigated metal ions. The thermal degradation of CMPS-PAN resin in the presence of the ions showed different stability of the resin in the following decreasing order: Au3+>Pt4+>Mn2+>Cu2+>Cr3+>Fe3+. On the basis of the applicability of a non-isothermal kinetic equation, the decomposition process was a first-order reaction. The activation energy, Ea, the entropy change, ΔS *, the enthalpy change, ΔH * and the Gibbs free energy of activation, ΔG * were calculated by applying the theory of the reaction rates. The effect of the different central metal ions on the calculated thermodynamic activation parameters was discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The adsorption of dibenzothiophene (DBT) in hexadecane onto NaY zeolite has been studied by performing equilibrium and kinetic adsorption experiments. The influence of several variables such as contact time, initial concentration of DBT and temperature on the adsorption has been investigated. The results show that the isothermal equilibrium can be represented by the Langmuir equation. The maximum adsorption capacity at different temperatures and the corresponding Langmuir constant (K L ) have been deduced. The thermodynamic parameters (ΔG 0H 0S 0) for the adsorption of DBT have also been calculated from the temperature dependence of K L using the van’t Hoff equation. The value of ΔH 0S 0 are found to be −30.3 kJ mol−1 and −33.2 J mol−1 K−1 respectively. The adsorption is spontaneous and exothermic. The kinetics for the adsorption process can be described by either the Langmuir model or a pseudo-second-order model. It is found that the adsorption capacity and the initial rate of adsorption are dependent on contact time, temperature and the initial DBT concentration. The low apparent activation energy (12.4 kJ mol−1) indicates that adsorption has a low potential barrier suggesting a mass transfer controlled process. In addition, the competitive adsorption between DBT, naphthalene and quinoline on NaY was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号