首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biologically important Ca-proteins and Ca-biominerals as metal-polymer complexes are often regulated by the complexation and demetalation with the biopolymers. Metal-oxygen bond is supported by NH···O hydrogen bonds between coordinating oxyanion and neighboring amide NH and by the successive hydrogen bonding networks. Carboxylate anion under hydrophobic conditions has a high basicity that leads to a covalent Ca-O bond character that is significantly affected by the NH···O hydrogen bond. The hydrogen bonds in Asp-containing tripeptide fragments in Ca-proteins presumably control coordination/dissociation of metal-oxygen bonds. Our systematic studies of carboxylate, sulfonate and phosphate Ca(II) complexes demonstrate a relationship between the basicity of oxyanion in carboxylate and hydrogen bonds as cooperating with the oligopeptide conformation in Asp-containing Ca(II) complexes. Hydrogen bonds between carboxylate oxyanion and amide NH, controlled by a conformational switching of oligopeptide fragments, seem to be one of essential factors for the regulatory formation of Ca-proteins and nano-architectures in connection with the interface structure of inorganic and organic phases in biominerals.  相似文献   

2.
One of the major challenges in the processing of hydrogels based on poly(ethylene glycol) (PEG) is to create mechanically robust electrospun hydrogel scaffolds without chemical crosslinking postprocessing. In this study, this is achieved by the introduction of physical crosslinks in the form of supramolecular hydrogen bonding ureido‐pyrimidinone (UPy) moieties, resulting in chain‐extended UPy‐PEG polymers (CE‐UPy‐PEG) that can be electrospun from organic solvent. The resultant fibrous meshes are swollen in contact with water and form mechanically stable, elastic hydrogels, while the fibrous morphology remains intact. Mixing up to 30 wt% gelatin with these CE‐UPy‐PEG polymers introduce bioactivity into these scaffolds, without affecting the mechanical properties. Manipulating the electrospinning parameters results in meshes with either small or large fiber diameters, i.e., 0.63 ± 0.36 and 2.14 ± 0.63 µm, respectively. In that order, these meshes provide support for renal epithelial monolayer formation or a niche for the culture of cardiac progenitor cells.  相似文献   

3.
2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position α to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of ~6. The role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.  相似文献   

4.
Calcium phosphates are among the most important biominerals in living organisms, where they play both a mechanical and a calcium storage role. Their growth in vivo is under strong biological control, and this process occurs in closed spaces. Our aim in this paper is to describe a microreactor system able to control the mineralization process within closed spaces. To this aim we produce giant liposomes containing calcium ions as active ions in the mineralization process, spermine as an activator of crystal growth, and alkaline phosphatase as a catalyst to convert phosphate esters into phosphates. These phosphate esters are provided in the form of p-nitrophenyl phosphate outside of the liposomes. It is demonstrated that these amphiphilic molecules are able to diffuse through the lipidic container and to be subsequently hydrolyzed under enzymatic catalysis into active phosphate species which interact with the already available calcium and spermine to produce calcium phosphates only in the interior of the liposomes. This opens the route to control the calcium phosphate particle size in biomimetic systems.  相似文献   

5.
A rational synthetic strategy is developed to provide compact and simple terpyridine (terpy) mesogens that show liquid-crystallinity both as pure compounds and in organic solution (amphotropic compound). The use of a central 4-methyl-3,5-diacylaminophenyl platform equipped with two lateral aromatic rings, each bearing three appended aliphatic chains, allows connection of a 2,2':6',2'-terpyridine fragment through a polar group such as an ester, amide, or flat conjugated alkyne linker. For the T(12)ester and T(12)amide scaffolds, the mesophase is best described as a lamellar phase, in which the molecules self-assemble into columnar stacks held together in layers. In the T(12)amide case, the additional amide link results in significant stabilization of the lamellar phase. The driving forces for the appearance of columnar ordering are the hydrogen-bonding interactions of the amide groups, which induce head-to-tail pi-stacking of the terpy subunits. Replacing the polar linker by a nonpolarized but linear alkyne spacer, as in the T(12)ethynyl compound, provides a columnar mesophase organized in a rectangular lattice of p2gg symmetry. In this arrangement, two nondiscotic molecules arranged into dimers by hydrogen bonding and pi-pi stacking pile up in a head-to-tail manner to form columns. In addition, the T(12)amide compound proves to be an excellent gelator of cyclohexane, linear alkanes, and DMSO. The resulting robust and transparent gels are birefringent and formed by large aggregates that are readily aligned by shear-flow. TEM and freeze-fracture microscopy reveal that the gels have an original layered morphology made of fibers.  相似文献   

6.
The metal ion affinities of a ligand in a polymer-supported reagent can be enhanced by the presence of a proximate group capable of hydrogen bonding. A new polymer-supported reagent has been synthesized by immobilizing tris(hydroxymethyl)aminomethane (Tris) onto cross-linked poly(vinylbenzyl chloride) and then phosphorylating the -OH moieties. The -NH- acts as the auxiliary group to increase the extent of complexation by the phosphate ligand. Additionally, Tris acts as a scaffold, wherein the phosphate ligands are in a known stereochemical arrangement. The Tris resin is mono-, di-, and triphosphorylated, depending on the concentration of the phosphorylating agent. The highest metal ion affinities are found with the resin having a phosphorus-to-nitrogen ratio of 2.36, consistent with one-third of the ligands being triphosphorylated and the remainder being diphosphorylated. The unphosphorylated Tris and phosphonate diester resins have no ionic affinities under the same conditions. Trivalent ions (Fe(III), Al(III), La(III), Eu(III), Lu(III)) are preferred over divalent ions (Pb(II), Cd(II), Cu(II), Zn(II)) from solutions at pH 2. The distribution coefficients of the divalent ions correlate with the Misono softness parameters, indicating that the polarizability of the phosphoryl oxygen is important to binding of the metal ions. The mechanism of complexation is probed with Fe(III) in 0.01-5 M HNO3 and HCl. The high affinities are ascribed to activation of the P=O ligand toward metal ion binding by the N-H moieties acting as auxiliary groups, coupled with intraligand cooperation among the phosphate moieties at a given site. FTIR spectra show that the P=O band at 1261 cm-1 shifts as a function of the extent of hydrogen bonding. Binding at the P=O requires a balance between activation by hydrogen bonding and availability of the lone pair electrons to the metal ions.  相似文献   

7.
Biomimetic materials which display the complexity of biominerals like nacre are synthetically difficult to prepare. The formation of chitin/calcium carbonate composites, where CaCO(3) is present as aragonite, was achieved via reacetylation of preformed chitosan scaffolds followed by the combination of presoaking of chitin templates with mineral solutions in the presence of poly(acrylic acid). The as-synthesised composites are comprised of well-ordered ribbons of aragonite crystals held within an organic matrix, mimicking the structure of nacre.  相似文献   

8.
PA6/CaCl_2复合物的络合机理研究   总被引:2,自引:0,他引:2  
通过负离子淤浆聚合制备了高相对黏度的聚酰胺6(PA6)粉末料,将其加入氯化钙甲酸溶液中制备不同的PA6/CaCl2单位链节摩尔比络合溶液.采用X射线光电子能谱(XPS)、红外分析方法研究了PA6/CaCl2复合物的络合机理.结果表明,复合物中钙原子与聚酰胺6分子链上的羰基氧原子发生配位作用,破坏了PA6本身的氢键,释放出自由NH,而氯离子则与NH形成氢键.同时通过电导率测试推测氯化钙与酰胺键之间的配合形式为四配位或者六配位.  相似文献   

9.
Molecular dynamics simulation of the Michaelis complex, phospho‐enzyme intermediate, and the wild‐type and C12S mutant have been carried out to examine hydrogen‐bonding interactions in the active site of the bovine low molecular weight protein‐tyrosine phosphatase (BPTP). It was found that the Sγ atom of the nucleophilic residue Cys‐12 is ideally located at a position opposite from the phenylphosphate dianion for an inline nucleophilic substitution reaction. In addition, electrostatic and hydrogen‐bonding interactions from the backbone amide groups of the phosphate‐binding loop strongly stabilize the thiolate anion, making Cys‐12 ionized in the active site. In the phospho‐enzyme intermediate, three water molecules are found to form strong hydrogen bonds with the phosphate group. In addition, another water molecule can be identified to form bridging hydrogen bonds between the phosphate group and Asp‐129, which may act as the nucleophile in the subsequent phosphate hydrolysis reaction, with Asp‐129 serving as a general base. The structural difference at the active site between the wild‐type and C12S mutant has been examined. It was found that the alkoxide anion is significantly shifted toward one side of the phosphate binding loop, away from the optimal position enjoyed by the thiolate anion of the wild‐type enzyme in an SN2 process. This, coupled with the high pKa value of an alcoholic residue, makes the C12S mutant catalytically inactive. These molecular dynamics simulations provided details of hydrogen bonding interactions in the active site of BPTP, and a structural basis for further studies using combined quantum mechanical and molecular mechanical potential to model the entire dephosphorylation reaction by BPTP. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1192–1203, 2000  相似文献   

10.
A series of molecular models of the adducts formed between N-acetyl-l-tryptophan ethylamide and diacetyl-sn-glycero-3-phosphocholine have been generated. Using rOesy data that enabled us to place restrictions on the proximity of a number of key protons in the amino acid/phosphocholine pairs, a series of structures were generated following molecular dynamics and mechanics experiments using the CHARMM27 force field. These structures were then subjected to a series of clustering algorithms in order to classify the tight binding interactions between a single tryptophan and a phosphocholine. From these analyses, it is evident that: (i) binding is characterised by hydrogen bonding between the indole NH as donor and phosphate oxygen as acceptor, cation-carbonyl interactions between the choline ammonium and amide carbonyl groups and cation-pi interactions; (ii) cation-pi interactions are not always observed, particularly when their formation is at the expense of cation-carbonyl and hydrogen bonding interactions; (iii) on the basis of amino acid torsional parameters, it is possible to predict whether the phosphocholine headgroup will bind in a compact or elongated conformation. Extension of the procedures to characterise 2 : 1 Trp-PC binding revealed that the same intermolecular interactions are predominant; however, combinations of all three intermolecular interactions within the same adduct occur much more frequently due to the availability of donor/acceptor groups from both tryptophans in the 2 : 1 system.  相似文献   

11.
李春  于严淏 《应用化学》2022,39(1):74-85
碳酸钙、磷酸钙为代表的生物矿物广泛分布于自然界中,经过不同的矿化过程,在生物体内呈现出多样的结构、形貌和功能,构成生物体多种组织和器官.在人工材料合成领域,仿生矿化通过调控碳酸钙、磷酸钙等矿物的成核与生长,获得具有复杂高级结构和特殊生物功能的无机或无机/有机复合材料.本文重点介绍仿生矿化机理和应用的最近研究进展,包括仿...  相似文献   

12.
纳米磷酸钙在自然界骨组织的形成过程中起到了关键作用。尽管骨的类型有所不同,但在其初级结构中的无机成分都是纳米磷酸钙。纳米磷酸钙结构能够给予骨良好的机械性能和生物学活性。在生物体中,无机纳米磷酸钙在有机基质的调控下能定向自组装成特定的生物矿物。体外细胞实验显示小尺寸纳米羟基磷灰石更能促进骨髓基质干细胞的增殖,而同尺寸的结晶型纳米磷酸钙则比无定形磷酸钙更能利于干细胞分化。鉴于纳米磷酸钙具有很好的生物相容性和骨诱导性,可以发展成为理想的生物材料常用于骨组织工程和生物医学。  相似文献   

13.
A ferrocene-quinone dyad (Fc-Q) with a rigid amide spacer and Fc-(Me)Q dyad, in which the amide proton acting as a hydrogen-bonding acceptor is replaced by the methyl group, are employed to examine the effects of hydrogen bonding on both the thermal and the photoinduced electron-transfer reactions. The hydrogen bonding of the semiquinone radical anion with the amide proton in Fc-Q(.-) produced by the electron-transfer reduction of Fc-Q is indicated by the significant positive shift of the one-electron reduction potential of Fc-Q. The hyperfine coupling constants of Fc-Q(.-) also indicate the existence of hydrogen bonding, agreeing with those predicted by the density functional calculation. The hydrogen-bonding dynamics in the photoinduced electron transfer from the ferrocene (Fc) to the quinone moiety (Q) in Fc-Q have been successfully detected in the femtosecond laser flash photolysis experiments. Thermal intramolecular electron transfer from Fc to Q in Fc-Q and Fc-(Me)Q also occurs efficiently in the presence of metal ions in acetonitrile at 298 K. The hydrogen bond formed between the semiquinone radical anion and the amide proton in Fc-Q results in remarkable acceleration of the rate of metal ion-promoted electron transfer as compared to the rate of Fc-(Me)Q in which hydrogen bonding is prohibited. The metal ion-promoted electron-transfer rates are well correlated with the binding energies of superoxide ion-metal ion complexes, which are derived from the g(zz) values of the ESR spectra.  相似文献   

14.
One of the challenges in organic systems with semiconducting function is the achievement of molecular orientation over large scales. We report here on the use of self-assembly kinetics to control long-range orientation of a quarterthiophene derivative designed to combine intermolecular π-π stacking and hydrogen bonding among amide groups. Assembly of these molecules in the solution phase is prevented by the hydrogen-bond-accepting solvent tetrahydrofuran, whereas formation of H-aggregates is facilitated in toluene. Rapid evaporation of solvent in a solution of the quarterthiophene in a 2:1:1 mixture of 1,4-dioxane/tetrahydrofuran/toluene leads to self-assembly of kinetically trapped mats of bundled fibers. In great contrast, slow drying in a toluene atmosphere leads to the homogeneous nucleation and growth of ordered structures shaped as rhombohedra or hexagonal prisms depending on concentration. Furthermore, exceedingly slow delivery of toluene from a high molecular weight polymer solution into the system through a porous aluminum oxide membrane results in the growth of highly oriented hexagonal prisms perpendicular to the interface. The amide groups of the compound likely adsorb onto the polar aluminum oxide surface and direct the self-assembly pathway toward heterogeneous nucleation and growth to form hexagonal prisms. We propose that the oriented prismatic polymorph results from the synergy of surface interactions rooted in hydrogen bonding on the solid membrane and the slow kinetics of self-assembly. These observations demonstrate how self-assembly conditions can be used to guide the supramolecular energy landscape to generate vastly different structures. These fundamental principles allowed us to grow oriented prismatic assemblies on transparent indium-doped tin oxide electrodes, which are of interest in organic electronics.  相似文献   

15.
纳米磷酸钙在自然界骨组织的形成过程中起到了关键作用。尽管骨的类型有所不同,但在其初级结构中的无机成分都是纳米磷酸钙。纳米磷酸钙结构能够给予骨良好的机械性能和生物学活性。在生物体中,无机纳米磷酸钙在有机基质的调控下能定向自组装成特定的生物矿物。体外细胞实验显示小尺寸纳米羟基磷灰石更能促进骨髓基质干细胞的增殖,而同尺寸的结晶型纳米磷酸钙则比无定形磷酸钙更能利于干细胞分化。鉴于纳米磷酸钙具有很好的生物相容性和骨诱导性,可以发展成为理想的生物材料常用于骨组织工程和生物医学。  相似文献   

16.
Two 1,2,3-triazole- and amide-incorporated macrocycles have been prepared by 1,3-dipolar cycloaddition of the corresponding dialkyne and diazide precursors. Intramolecular C–H?O hydrogen bonding is introduced to lock the C5–H atoms of the 1,2,3-triazole rings. The binding of the two macrocycles to amide, monosaccharide, and halide derivatives in chloroform or dichloromethane has been investigated. It is revealed that the amide units dominate their binding toward the amide and monosaccharide guests through forming intermolecular hydrogen bonding and 1,2,3-triazole is as weak as an intermolecular hydrogen bonding acceptor, but it forms intermolecular halogen bonding when cooperative effect exists.  相似文献   

17.
A series of novel heteroditopic hexahomotrioxacalix[3]arene triamide receptors capable of binding an anion and cation simultaneously in a cooperative fashion has been prepared. The lower rim functionalized cone-hexahomotrioxacalix[3]arene derivatives cone-5a-5d bearing three amide groups were synthesized from cone-3 by a stepwise reaction. The crystal structures of 5c and 5d and (1)H NMR studies in nonpolar solvents strongly indicate that a number of interesting intramolecular hydrogen bonding interactions exist in these receptors. The binding abilities of these compounds towards n-butylammonium chloride and bromide salts have been investigated using (1)H NMR titration experiments in CDCl(3) solvent. Owing to the 'flattened cone' conformations and intramolecular hydrogen bonding involving the amide NH and neighbouring O atoms in cone-5a-5d, the affinities toward n-Bu(4)NX (X = Cl(-) and Br(-)) were weakened. However, it should be noted that triamides cone-5a-5d show a single selectivity for halide anions in the presence of n-BuNH(3)(+) through intermolecular hydrogen bonding with the amide NH hydrogen atoms in the receptors in CDCl(3) solution. Association constants were calculated from the chemical shift changes of the amide protons.  相似文献   

18.
Several mobile phase additives (i.e., organic acids and their ammonium salts) were used to modulate the chromatographic retention of cyanocobalamin and its cis‐diaminemonochloroplatinum(II) conjugate, depending on the specific nature of the stationary phase. Regardless of the mobile phase additive, the positively charged cyanocobalamin‐cis‐diaminemonochloroplatinum(II) conjugate was systematically less retained than cyanocobalamin on a conventional octadecyl‐silica column. In contrast, the amide‐embedded C18 column exhibited a progressive increase in the conjugate retention time upon changing the mobile phase additive from organic (acetic, formic and trifluoroacetic) acids to ammonium salts, ultimately leading to an inversion of the elution order. This change of retention was interpreted by invoking the interplay between hydrophobic interactions, hydrogen bonding between the conjugate and the polar amide groups and the ion‐pairing ability of the lyophilic counterions, whereby the acetate anion was found to be the most suitable to control the solute retention.  相似文献   

19.
The adsorption of extracellular polymeric substances (EPS) from Bacillus subtilis on montmorillonite, kaolinite and goethite was investigated as a function of pH and ionic strength using batch studies coupled with Fourier transform infrared (FTIR) spectroscopy. The adsorption isotherms of EPS on minerals conformed to the Langmuir equation. The amount of EPS-C and -N adsorbed followed the sequence of montmorillonite>goethite>kaolinite. However, EPS-P adsorption was in the order of goethite>montmorillonite>kaolinite. A marked decrease in the mass fraction of EPS adsorption on minerals was observed with the increase of final pH from 3.1 to 8.3. Calcium ion was more efficient than sodium ion in promoting EPS adsorption on minerals. At various pH values and ionic strength, the mass fraction of EPS-N was higher than those of EPS-C and -P on montmorillonite and kaolinite, while the mass fraction of EPS-P was the highest on goethite. These results suggest that proteinaceous constituents were adsorbed preferentially on montmorillonite and kaolinite, and phosphorylated macromolecules were absorbed preferentially on goethite. Adsorption of EPS on clay minerals resulted in obvious shifts of infrared absorption bands of adsorbed water molecules, showing the importance of hydrogen bonding in EPS adsorption. The highest K values in equilibrium adsorption and FTIR are consistent with ligand exchange of EPS phosphate groups for goethite surface. The information obtained is of fundamental significance for understanding interfacial reactions between microorganisms and minerals.  相似文献   

20.
Among various high-temperature organic polymers, the aromatic polyamides have shown excellent thermal stability due to the stiffness of the polymer chain and hydrogen bonding of the amide groups, but had limited solubility in most organic solvents [1-3].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号