首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Oxy-fuel combustion is a promising alternative for power generation with CO2 capture, where the fuel is burned in an atmosphere enriched with oxygen and CO2 is used as a diluent. This type of combustion is characterised by uncommon characteristics in terms of thermal heat transfer budget as compared to air supported systems. The study presents experimental results of radiative heat flux along the flame axis and radiant fractions of non-premixed jet methane flames developing in oxy-fuel environments with oxygen concentrations ranging from 35% to 70%, as well as in air. The flames investigated have inlet Reynolds numbers from 468 to 2340. The data collected have highlighted the effects of the flame structure and thermo-chemical properties of oxy-fuel combustion on the heat flux radiated by the flames. It was first observed that peak heat flux increases considerably with oxygen concentration. More generally the radiant fraction increases with both increasing Reynolds number in the laminar regime and oxygen concentration. It was found that despite a difference in flame temperature, the radiative characteristics of the flames (heat flux distributions and radiant fraction) in air were similar to those with 35% O2 in CO2. The radiative properties of flames in oxy-fuel atmosphere with CO2 as diluents appear to be dominated by the flame temperature.  相似文献   

2.
In this numerical study, an algebraic flame surface wrinkling (AFSW) reaction submodel based on the progress variable approach is implemented in the large-eddy simulation (LES) context and validated against the triangular stabilized bluff body flame configuration measurements i.e. in VOLVO test rig. The quantitative predictability of the AFSW model is analyzed in comparison with another well validated turbulent flame speed closure (TFC) combustion model in order to help assess the behaviour of the present model and to further help improve the understanding of the flow and flame dynamics. Characterization of non-reacting (or cold) and reacting flows are performed using various subgrid scale models for consistent grid size variation with 300,000 (coarse), 1.2 million (intermediate) and 2.4 million (fine) grid cells. For non-reacting flows at inlet velocity of 17?m/s and inlet temperature 288?K, coarse grid leads to over prediction of turbulence quantities due to low dissipation at the early stage of flow development behind the bluff body that convects downstream eventually polluting the resulting solution. The simulated results with the intermediate (and fine) grid for mean flow and turbulence quantities, and the vortex shedding frequency (fs) closely match experimental data. For combusting flows for lean propane/air mixtures at 35?m/s and 600?K, the vortex shedding frequency increase threefold compared with cold scenario. The predicted results of mean, rms velocities and reaction progress variable are generally in good agreement with experimental data. For the coarse grid the combustion predictions show a shorter recirculation region due to higher turbulent burning rate. Finally, both cold and reacting LES data are analyzed for uncertainty in the solution using two quality assessment techniques: two-grid estimator by Celik, and model and grid variation by Klein. For both approaches, the resolved turbulent kinetic energy is used to estimate the grid quality and error assessment. The quality assessment reveals that the cold flows are well resolved even on the intermediate mesh, while for the reacting flows even the fine mesh is locally not sufficient in the flamelet region. The Klein approach estimates that depending on the recirculation region in cold scenario both numerical and model errors rise near the bluff-body region, while in combusting flows these errors are significant behind the stabilizing point due to preheating of unburned mixture and reaction heat release. The total error mainly depends on the numerical error and the influence of model error is low for this configuration.  相似文献   

3.
In the present study laminar and turbulent oxy-fuel jet flames are investigated both experimentally and numerically with emphasis on the direct comparison of the Rayleigh signal. The Rayleigh signal was measured for both flame setups, correcting for background light appropriately. Two downstream regions were recorded for the laminar flame and three for the turbulent flame. Equivalently, the signal was processed numerically based on the numerical species data and temperature. The laminar flame was used for validating the procedure of processing the Rayleigh signal. Both the numerical species data and the temperature are known from detailed simulations, so a predicted Rayleigh signal can easily be obtained. Further, the influence of the choice of the kinetic mechanism, radiation and diffusion model was investigated. In contrast, in the turbulent Large Eddy Simulation, the Rayleigh signal has to be computed using an appropriate turbulence-chemistry interaction model in order to obtain the Reynolds-filtered Rayleigh signal which is of non-linear nature. In the present investigation, the Rayleigh signal was incorporated in the flamelet/progress variable approach. The statistics of the experimental and numerical Rayleigh signal were then compared. The proposed procedure of directly comparing the experimental and predicted Rayleigh signal was shown to be advantageous in model validation especially in turbulent flame configurations. The procedure enables accurate model validation across an entire 2D field of view whilst using a realistic fuel-oxidizer combination and reducing experimental complexity.  相似文献   

4.
The Hencken burner flame is often used in combustion laser diagnostics as a calibration flame because of its near adiabatic condition. For a fast burning H2 flame, it can tolerate high flow rate and the flame is indeed near adiabatic; however, for a slow burning CH4 flame, the flow rate is not always high enough to maintain near adiabatic conditions. The heat transfer of the H2 and CH4 Hencken burner flames are studied numerically and experimentally. Three heat loss mechanisms are analyzed: the burner surface radiation, the hot gas radiation, and the convection heat transfer between the main flow and the co-flow. The surface radiation produces negligible temperature drop while the gas radiation and the convection heat loss contribute significant temperature drop. Reducing the co-flow rate can decrease the convection heat loss slightly. The temperature drop caused by the heat loss is inversely proportional to the main flow rate. Increasing the burner size and running the flame premixed mode can increase the flow rate and reduce the temperature deviation from the adiabatic equilibrium value. Based on the heat loss and temperature drop analysis, suggestions are given to maintain the flame at near adiabatic conditions.  相似文献   

5.
The radiative heat transfer in oxy-fuel flames is compared to corresponding conditions in air-fuel flames during combustion of lignite in the Chalmers 100 kW oxy-fuel test facility. In the oxy-fuel cases the flue-gas recycle rate was varied, so that, in principle, the same stoichiometry was kept in all cases, whereas the oxygen fraction in the recycled flue-gas mixture ranged from 25 to 29 vol.%. Radial profiles of gas concentration, temperature and total radiation intensity were measured in the furnace. The temperature, and thereby the total radiation intensity of the oxy-fuel flames, increases with decreasing flue-gas recycle rate. The ratio of gas and total radiation intensities increases under oxy-fuel conditions compared to air-firing. However, when radiation overlap between gas and particles is considered the ratios for air-firing and oxy-fuel conditions become more similar, since the gas-particle overlap is increased in the CO2-rich atmosphere. A large fraction of the radiation in these lignite flames is emitted by particles whose radiation was not significantly influenced by oxy-fuel operation. Therefore, an increment of gas radiation due to higher CO2 concentration is not evident because of the background of particle radiation, and, the total radiation intensities are similar during oxy-fuel and air-fuel operation as long as the temperature distributions are similar.  相似文献   

6.
Spontaneous nucleation is the primary way of droplet formation in the supersonic gas separation technology, and the converging–diverging nozzle is the condensation and separation unit of supersonic gas separation devices. A three-dimensional geometrical model for the generation of self-rotational transonic gas flow is set up, based on which, the spontaneous nucleation of self-rotational transonic moist gas in the converging–diverging nozzle is carried out using an Eulerian multi-fluid model. The simulated results of the main flow and nucleation parameters indicate that the spontaneous nucleation can occur in the diverging part of the nozzle. However, different from the nucleation flow without self-rotation, the distributions of these parameters are unsymmetrical about the nozzle axis due to the irregular flow form caused by the self-rotation of gas flow. The nucleation region is located on the position where gas flows with intense rotation and the self-rotation impacts much on the nucleation process. Stronger rotation delays the onset of spontaneous nucleation and yields lower nucleation rate and narrow nucleation region. In addition, influences of other factors such as inlet total pressure p 0, inlet total temperature T 0, the nozzle-expanding ratio ? and the inlet relative humidity ф 0 on the nucleation of self-rotational moist gas flow in the nozzle are also discussed.  相似文献   

7.
Dynamic processes in gas turbine (GT) combustors play a key role in flame stabilization and extinction, combustion instabilities and pollutant formation, and present a challenge for experimental as well as numerical investigations. These phenomena were investigated in two gas turbine model combustors for premixed and partially premixed CH4/air swirl flames at atmospheric pressure. Optical access through large quartz windows enabled the application of laser Raman scattering, planar laser-induced fluorescence (PLIF) of OH, particle image velocimetry (PIV) at repetition rates up to 10 kHz and the simultaneous application of OH PLIF and PIV at a repetition rate of 5 kHz. Effects of unmixedness and reaction progress in lean premixed GT flames were revealed and quantified by Raman scattering. In a thermo-acoustically unstable flame, the cyclic variation in mixture fraction and its role for the feedback mechanism of the instability are addressed. In a partially premixed oscillating swirl flame, the cyclic variations of the heat release and the flow field were characterized by chemiluminescence imaging and PIV, respectively. Using phase-correlated Raman scattering measurements, significant phase-dependent variations of the mixture fraction and fuel distributions were revealed. The flame structures and the shape of the reaction zones were visualized by planar imaging of OH distribution. The simultaneous OH PLIF/PIV high-speed measurements revealed the time history of the flow field–flame interaction and demonstrated the development of a local flame extinction event. Further, the influence of a precessing vortex core on the flame topology and its dynamics is discussed.  相似文献   

8.
Oxy-fuel flames for direct combustion hydrolysis of fused silica (DQ) are characterized, using non- intrusive optical measurement techniques only. Flow, temperature, concentrations, development of silica nano-particles in the flame, and surface temperature of the glass in the flame are measured. The setup used for characterization of particle distribution via Rayleigh scattering as well as mandatory improvements of the Raman/Rayleigh technique for temperature and concentration measurements in oxy-fuel flames have been developed in the framework of this study and are presented. The measurement techniques herein demonstrated are not only capable of describing these special extremely hot flames, but are broadly applicable in oxy-fuel flames as well as in chemical vapor deposition (CVD) processes. The presented data evidently shows that if the special character of oxy-fuel flames is taken into account, some of the results drawn from earlier investigations into CVD, concerning particle growth, flame stability, and particle deposition efficiency, are transferable into DQ. From the extensive data given, connections between different information are detected and help to reduce required measurements for further investigation and point to simple techniques that might be used for online process monitoring, at least during research and development of similar flames. Received: 18 December 2000 / Accepted: 14 June 2001  相似文献   

9.
The structure of a turbulent non-premixed flame of a biogas fuel in a hot and diluted coflow mimicking moderate and intense low dilution (MILD) combustion is studied numerically. Biogas fuel is obtained by dilution of Dutch natural gas (DNG) with CO2. The results of biogas combustion are compared with those of DNG combustion in the Delft Jet-in-Hot-Coflow (DJHC) burner. New experimental measurements of lift-off height and of velocity and temperature statistics have been made to provide a database for evaluating the capability of numerical methods in predicting the flame structure. Compared to the lift-off height of the DNG flame, addition of 30 % carbon dioxide to the fuel increases the lift-off height by less than 15 %. Numerical simulations are conducted by solving the RANS equations using Reynolds stress model (RSM) as turbulence model in combination with EDC (Eddy Dissipation Concept) and transported probability density function (PDF) as turbulence-chemistry interaction models. The DRM19 reduced mechanism is used as chemical kinetics with the EDC model. A tabulated chemistry model based on the Flamelet Generated Manifold (FGM) is adopted in the PDF method. The table describes a non-adiabatic three stream mixing problem between fuel, coflow and ambient air based on igniting counterflow diffusion flamelets. The results show that the EDC/DRM19 and PDF/FGM models predict the experimentally observed decreasing trend of lift-off height with increase of the coflow temperature. Although more detailed chemistry is used with EDC, the temperature fluctuations at the coflow inlet (approximately 100K) cannot be included resulting in a significant overprediction of the flame temperature. Only the PDF modeling results with temperature fluctuations predict the correct mean temperature profiles of the biogas case and compare well with the experimental temperature distributions.  相似文献   

10.
Large Eddy Simulation has been applied to a piloted methane/air diffusion flame—the Sandia D flame—for which detailed experimental data are available. To evaluate the reacting density, temperature and species mass fractions a conserved scalar laminar flamelet formulation is employed, utilising a single virtually unstrained flamelet. The results of two simulations are discussed, comparing the use of the standard Smagorinsky model and a dynamic variant for closure of the unknown sub-grid stress. The chosen sub-grid scale model is shown to be extremely influential on the final solution. Whilst the use of the standard model results in a relatively poor simulation the dynamic closure offers an excellent velocity field prediction throughout the flame. Although the flame does show some strain rate influence on burning, particularly close to the inlet nozzle, the relatively simple ‘unstrained’ flamelet model applied is shown to provide an accurate representation of temperature and major species distribution.  相似文献   

11.
A detailed numerical simulation of kerosene spray combustion was carried out on a partially premixed, prevaporized, three-dimensional configuration. The focus was on the flame temperature profile dependency on the length of the pre-vaporization zone. The results were analyzed and compared to experimental data. A fundamental study was performed to observe the temperature variation and flame flashback. Changes were made to the droplet diameter, kerosene flammability limits, a combustion model parameter and the location of the combustion initialization. Investigations were performed for atmospheric pressure, inlet air temperature of 90 °C and a global equivalence ratio of 0.7. The simulations were carried out using the Eulerian Lagrangian procedure under a fully two-way coupling. The Bray–Moss–Libby model was adjusted to account for the partially premixed combustion.  相似文献   

12.
A numerical model is developed to predict the steady-state and transient behaviour of forced-convection boiling two-phase flow in a single channel. The model is based on the assumption of homogeneous two-phase flow and thermodynamic equilibrium of the phases. Compressibility effects in the two-phase region, motion of the bulk boiling interface and the thermal capacity of the heater wall have been included in the analysis. The model is used to study the effects of heat input, inlet subcooling and flow rate on the system behaviour. For comparison purposes, an experimental investigation was conducted using a single-channel, electrically heated, forced-convection upflow system. Steady-state operating characteristics, and stable and unstable regions, are determined as a function of heat flux, inlet subcooling and mass flow rate. Different modes of oscillation and their characteristics have been investigated. The model's predictions are in good agreement with the experimental results.  相似文献   

13.
14.
A large eddy simulation (LES) is performed for turbulent flow around a bluff body inside a sudden expansion cylinder chamber, a configuration which resembles a premixed gas turbine combustor. To promote turbulent mixing and to accommodate flame stability, a flame holder is installed inside the combustion chamber. The Smagorinsky model and the Lagrangian dynamic subgrid-scale model are employed and tested. The calculated Reynolds number is 5,000 based on the bulk velocity and the diameter of inlet pipe. The simulation code is constructed by using a general coordinate system based on the physical contravariant velocity components. The predicted turbulent statistics are evaluated by comparing with the laser-doppler velocimetry (LDV) measurement data. The agreement of LES with the experimental data is shown to be satisfactory. Emphasis is placed on the time-dependent evolutions of turbulent vortical structures behind the flame holder. The numerical flow visualizations depict the behavior of large-scale vortices. The turbulent behavior behind the flame holder is analyzed by visualizing the sectional views of vortical structure. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
When applying flame sheet models to predict the dynamics of turbulent flames, it is common to model turbulence using ensemble averaging of the velocity. Measurements of the flame dynamics were made to support use this type of methodology, by measuring the dynamic volume of the flame using phase averaged images of the CH chemiluminescence. The dynamics agreed with the common behavior described in the literature, namely frequency scaling according to Strouhal number based on flow convective timescales. However, slightly different timescales were observed for the response magnitude and phase, indicating the possibility of different scaling mechanisms at work between these phenomena. The flame heat release rate dynamics were found to be identical to the dynamic response of the flame volume to inlet velocity perturbations, suggesting a simple proportionality between heat release rate and the flame volume. This result supports the use of ensemble averaging for modeling of the turbulent velocity for predictions of flame dynamics.  相似文献   

16.
Propellant injection and turbulent combustion in high-pressure engines is often dominated by real-gas effects. However, previous studies suggested that the departure of the fluid properties from an ideal gas behavior has only a limited effect on the laminar flame structure. This is due to the fact that chemical reactions take place in the flame zone where the temperature is sufficiently high and molecular interactions are negligible, i.e., the ideal gas assumption is valid. On the other hand, various experimental and numerical studies of injection processes at high-pressure conditions demonstrated that real-gas effects can have a strong impact on the turbulent flow. Mixing is influenced by the rapid change of fluid properties. In this work, we exploit the gap in the fidelity of the thermodynamics model needed to describe the laminar flame structure and that needed to describe the turbulent flow field. We then propose a new real-gas flamelet model with increased numerical performance. The computational cost of the new formulation is not significantly higher than that of an ideal gas simulation. The performance of the method is analyzed and the error that is introduced by our assumptions is assessed by comparison to more complete modeling. Finally, the method is used to simulate a turbulent jet flame emanating from a coaxial injector at supercritical pressure and cryogenic oxidizer temperature. The results are compared with experimental OH? images giving evidence of the suitability of the present method.  相似文献   

17.
This study reports the results of a numerical investigation of three-dimensional turbulent buoyant recirculating flow within rooms with heated obstruction. The study involves the solution of partial differential equations for the conservation of mass, momentum, energy, concentration, turbulent energy and its dissipation rate. These equations were solved together with algebraic expressions for the turbulent viscosity and heat diffusivity using k-ε turbulence model by performing simulations on FLUENT 6.3. The CFD method was validated via comparing with the available experimental data. A comparison with experimental results shows good agreement. This means that the present computer code has a good capability to simulate 3D airflow and effect of obstruction within room. The present study demonstrates the flow behavior, thermal distribution and CO2 concentration inside the room in the presence of heat flux obstruction. Two different configurations of ventilation system have been studied. Mixing and Displacement ventilation system have been used in two geometries depending on location of opening inlet. The ventilation effectiveness for heat removal (ET) is used to evaluate the indoor climate and average temperature is an important parameter in designs the ventilation systems. Two notable points are presented; first, mixing ventilation is depending on throw of jet. CO2 concentration and temperature distribution have been effected in upper zone more than occupied zone with presence the obstruction. Second notable points are presented; in displacement ventilation buoyancy effect is considerable. Vertical temperature gradient above the obstruction implies that both fresh air and CO2 concentration.  相似文献   

18.
19.
A numerical investigation for an axisymmetric hypersonic turbulent inlet flow field of a perfect gas is presented for a three-shock configuration consisting of a biconic and a cowl. An upwind parabolized Navier-Stokes solver based on Roe's scheme is used to compute an oncoming flow Mach numberM =8, temperatureT =216 K, and pressureP =5.5293×103 N/m2. In order to assess the flow quantities, the interaction between shock and turbulence, and the inlet efficiency, three different flow calculations — laminar, turbulent with incompressible and compressible two-equationk- turbulence models — have been performed in this work.Computational results show that turbulence is markedly enhanced across an oblique shock with step-like increases in turbulence kinetic energy and dissipation rate. This enhancement is at the expense of the mean kinetic energy of the flow. Therefore, the velocity behind the shock is smaller in turbulent flow and hence the shock becomes stronger. The entropy increase through a shock is caused not only by the amplification of random molecular motion, but also by the enhancement of the chaotic turbulent flow motion. However, only the compressiblek- turbulence model can properly predict a decrease in turbulence length scale across a shock. Our numerical simulation reveals that the incompressiblek- turbulence model exaggerates the interaction between shock and turbulence with turbulence kinetic energy and dissipation rate remaining high and almost undissipated far beyond the shock region. It is shown that proper modeling of turbulence is essential for a realistic prediction of hypersonic inlet flowfield. The performed study shows that the viscous effect is not restricted in the boundary layer but extends into the main flow behind a shock wave. The loss of the available energy in the inlet performance therefore needs to be determined from the shock-turbulence interaction. The present study predicts that the inlet efficiency becomes relatively lower when turbulence is taken into account.  相似文献   

20.
This paper presents the numerical solutions of the transient temperature and thermally induced stress distributions in a partly-circumferentially heated cylindrical hollow workpiece (steel) with conjugate heat transfer. Outer surface of the workpiece is heated partly-circumferentially heat flux as its remainder outer surface is circumferentially cooled with fluid (water). Three phenomena have been considered as; (1) conduction inside the cylinder, (2) convection from the cylinder surface to the surrounding fluid, and (3) thermal stress produced by high temperature gradient inside the cylinder. The governing flow and energy equations have been solved numerically by using a control volume approach. The PHOENICS 3.2 and HEATING7 computer codes have been used for the numerical evaluation. The transient calculations have been performed individually for four fluid inlet velocities, ui = 0.005, 0.01, 0.015 and 0.020 m/s, until the system attains steady-state. The results of this study clearly demonstrate that the temperature contours in the low inlet velocity cases are more near to a symmetric case with respect to the y = 0 plane than that in the high inlet velocity cases, and the increment of the inlet velocity exponentially reduces the temperatures and thermally induced stresses in the workpiece. The effective thermal stress differences occurring in the workpiece can be significantly reduced by the high fluid inlet velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号