首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uniform LaOF and LaOF : Eu(3+) nanocrystals of the γ-form have been successfully synthesized under mild conditions via a facile hydrothermal method followed a heat treatment of their bastnaesite-type precursor (LaCO(3)F). The synthetic details, investigations into the phase purity and the presence of the oxocarbonate anion CO(3)(2-) proven by IR measurements and EDX, as well as X-ray powder diffraction data, are given. Photoluminescence (PL) and cathodoluminescence (CL) spectra were utilized to characterize the luminescence properties of the LaCO(3)F : Eu(3+) and LaOF : Eu(3+) samples. Under ultraviolet light excitation, the LaCO(3)F : Eu(3+) precursor shows an orange emission of Eu(3+) (dominated by (5)D(0)→(7)F(1)), while the product of heat treatment, LaOF : Eu(3+), shows the characteristic emissions of Eu(3+) ((5)D(J)→(7)F(J')J, J' = 0, 1, 2, 3 transitions). Under the excitation of UV and low-voltage electron beams, the emission color (including white) of LaOF : Eu(3+) can be tuned by adjusting the doping concentration of Eu(3+). The corresponding luminescence mechanisms have been discussed in detail.  相似文献   

2.
Nanosized rare earth phosphovanadate phosphors (Y(P,V)O(4):Eu(3+)) have been prepared by applying the organic-inorganic polymeric precursors methodology. Luminescent powders with tetragonal structure and different vanadate concentrations (0%, 1%, 5%, 10%, 20%, 50%, and 100%, with regard to the phosphate content) were then obtained for evaluation of their structural and spectroscopic properties. The solids were characterized by scanning electron microscopy, X-ray diffractometry, vibrational spectroscopy (Raman and infrared), and electronic spectroscopy (emission, excitation, luminescence lifetimes, chromaticity, quantum efficiencies, and Judd-Ofelt intensity parameters). The solids exhibited very intense (5)D(0)→(7)F(J) Eu(3+) transitions, and it was possible to control the luminescent characteristics, such as excitation maximum, lifetime and emission colour, through the vanadium(V) concentration. The observed luminescent properties correlated to the characteristics of the chemical environments around the Eu(3+) ions with respect to the composition of the phosphovanadates. The Eu(3+) luminescence spectroscopy results indicated that the presence of larger vanadium(V) amounts in the phosphate host lattice led to more covalent and polarizable chemical environments. So, besides allowing for control of the luminescent properties of the solids, the variation in the vanadate concentration in the obtained YPO(4):Eu(3+) phosphors enabled the establishment of a strict correlation between the observable spectroscopic features and the chemical characteristics of the powders.  相似文献   

3.
This paper first reports fabrication of macro/nanotextured rare-earth oxyfluoride films. Usage of ion-modified lanthanum diacetate hydroxide (LDAH) as self-templates was successful in producing nanoparticulate lanthanum oxyfluoride (LaOF) films. LDAH template films were deposited on glass substrates through a chemical bath deposition in solutions composed of lanthanum acetate sesquihydrate, methanol, trifluoroacetic acid, and aqueous ammonia. The LDAH films had a unique, nestlike morphology owing to a two-dimensional hexagonal crystal growth. Modification of LDAH with trifluoroacetate ions led to formation of LaOF after pyrolyzing the template films at temperatures of 400-600 degrees C in air. The resultant LaOF films had a nanoparticulate porous microstructure, maintaining the morphology of the original LDAH template films. It was also successful to incorporate Eu3+ ions into LaOF through deposition of the LDAH film in a solution containing europium acetate tetrahydrate. The characteristic photoluminescence from Eu(3+) was observed with an ultraviolet-light excitation at 273 nm, indicating that Eu3+ was homogeneously distributed in LaOF host crystals. Thus the ion-modification of LDAH was also demonstrated to be a useful method for preparing nanostructured rare-earth oxyfluoride materials havingvarious cationic compositions.  相似文献   

4.
Two Eu(III) ternary luminescent complexes, Eu(tpb-H)3(Tppo)2 and Eu(tpb-H)3(Topo)2 (Tppo: triphenylphosphine oxide, Topo: trioctylphosphine oxide, tpb: 4,4,4-trifluoro-1-phenyl-1,3-butanedione) were synthesized using β-diketonates and phosphine oxides as ligands. Luminescent polymers were fabricated by incorporating the deuterated Eu(III) complexes in a PMMA matrix. Luminescent PMMA containing Eu(tpb-D)3(Tppo)2 exhibited relatively higher quantum yield, faster radiation rate, sharper red emission and larger stimulated emission cross-section and the results indicated prepared luminescent polymers including Eu(tpb-D)3(Tppo)2 showed promising results for applications in novel organic Eu(III) devices. Additionally, the Eu(III) complexes and luminescent PMMA showed good thermostabilization.  相似文献   

5.
Superior fluorescence imaging methods are needed for detailed studies on biological phenomena, and one approach that permits precise analyses is time-resolved fluorescence measurement, which offers a high signal-to-noise ratio. Herein, we describe a new fluorescence imaging system to visualize biomolecules within living biological samples by means of time-resolved, long-lived luminescence microscopy (TRLLM). In TRLLM, short-lived background fluorescence and scattered light are gated out, allowing the long-lived luminescence to be selectively imaged. Usual time-resolved fluorescence microscopy provides fluorescence images with nanosecond resolution and has been used to image interactions between proteins, protein phosphorylation, the local pH, the refractive index, ion or oxygen concentrations, etc. Luminescent lanthanide complexes (especially europium and terbium trivalent ions (Eu3+ and Tb3+)), in contrast, have long luminescence lifetimes on the order of milliseconds. We have designed and synthesized new luminescent Eu3+ complexes for TRLLM and also developed a new TRLLM system using a conventional fluorescence microscope with an image intensifier unit for gated signal acquisition and a xenon flash lamp as the excitation source. When the newly developed luminescent Eu3+ complexes were applied to living cells, clear fluorescence images were acquired with the TRLLM system, and short-lived fluorescence was completely excluded. By using Eu3+ and Tb3+ luminescent complexes in combination, time-resolved dual-color imaging was also possible. Furthermore, we monitored changes of intracellular ionic zinc (Zn2+) concentration by using a Zn2+-selective luminescent Eu3+ chemosensor, [Eu-7]. This new imaging technique should facilitate investigations of biological functions with fluorescence microscopy, complementing other fluorescence imaging methodologies.  相似文献   

6.
Porous silica microspheres were fabricated by a facile surface-protected etching strategy. Polyvinylpyrrolidone (PVP) was used as a protecting polymer absorbed on the surface of silica microspheres and NaOH was employed as an etching agent. Owing to the protective action of PVP and inhomogeneous etching, mesopores were created in the silica microspheres. Then, based on the Pechini-type sol-gel and impregnating process, YVO(4):Eu(3+) nanocrystals were integrated into the channels to form highly luminescent YVO(4):Eu(3+)@SiO(2) composite microspheres. The biocompatibility tests on L929 fibroblast cells using MTT assay reveal low cytotoxicity of the system. Owing to the large interior space and electrostatic interaction, the porous microspheres show a relatively high loading capacity (438 mg DOX/YVO(4):Eu(3+)@SiO(2) g) and encapsulation efficiency (87.6%) for the anti-cancer drug doxorubicin hydrochloride (DOX). The drug release behavior and cytotoxic effect against human cervical carcinoma cells (HeLa cells) of the DOX-loaded YVO(4):Eu(3+)@SiO(2) carriers were investigated in vitro. It was found that the carriers present a highly pH-dependent drug release behavior due to electrostatic interaction between the silica surface and DOX molecules. The drug release rate became greater at low pH owing to the increased electrostatic repulsion. The DOX-loaded carriers demonstrate a similar or even greater anti-cancer activity with respect to the free DOX against HeLa cells. Furthermore, the PL intensity of the microspheres shows correlation with the cumulative release of DOX. These results suggest that the composite can potentially act as a multifunctional drug carrier system with luminescent tagging and pH-controlled release properties.  相似文献   

7.
Luminescent and mesoporous Eu(3+)/Tb(3+) doped calcium silicate microspheres (LMCS) were synthesized by using mesoporous silica spheres as the templates. The LMCS and drug-loaded samples were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), N(2) adsorption/desorption, and photoluminescence (PL) spectra. The results reveal that the LMCS have uniform spherical morphology with a diameter around 400 nm and the mesopore size of 6 nm. The prepared samples exhibit little cytotoxicity at concentrations below 5 mg mL(-1) via MTT assay. In addition, drug storage/release properties of the LMCS were demonstrated for ibuprofen (IBU). The obtained LMCS can be used to encapsulate drugs and release them. Under excitation by UV light, the IBU-loaded samples still show the characteristic (5)D(0)-(7)F(1-3) emission lines of Eu(3+) and the characteristic (5)D(4)-(7)F(3-6) emission lines of Tb(3+). The PL intensity of Eu(3+) in the drug carrier system increases with the cumulative released amount of IBU, making the drug release able to be tracked or monitored by the change of luminescence of Eu(3+). The LMCS reported here with mesoporous structure, good biocompatibility and luminescent property can be a promising drug delivery carrier.  相似文献   

8.
In this paper, we report the synthesis of thorium oxide and Eu-doped thorium oxide nanotubes for the first time using the sol-gel method in porous anodic aluminum oxide template. Transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy were applied to characterize the morphology and structure of the as-prepared nanotubes. It has been demonstrated that Eu(3+) ions were homogeneously doped into the ThO(2) crystal lattice. The optical properties resulting from Eu-doped products were investigated by means of photoluminescence spectroscopy. Strong visible light emissions were observed at low doping concentration, and the luminescent intensity decreased at high doping concentration. The luminescent centers were concluded to be the Eu(3+) ions in the cubic (O(h)) sites rather than the C(3v) sites, which accounted well for the decrease of luminescent intensity at high doping concentration.  相似文献   

9.
Luminescent, mesoporous, and bioactive europium-doped calcium silicate (MCS: Eu) was successfully synthesized. The obtained MCS: Eu(3+) was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as the model drug. The structural, morphological, textural, and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N(2) adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MCS: Eu exhibits the typical ordered characteristics of the mesostructure. This composite shows a sustained release profile with IBU as the model drug. The IBU-loaded samples still present red luminescence of Eu(3+) ((5)D(0)-(7)F(1,2)) under UV irradiation. The emission intensities of Eu(3+) in the drug carrier system vary with the amount of released IBU, making the drug release easily tracked and monitored. The system demonstrates a great potential for drug delivery and disease therapy.  相似文献   

10.
Luminescent Ln (Eu3+, Tb3+) doped hydroxyapatite (Eu:HAp, Tb:HAp) phosphors were successfully fabricated via the cetyltrimethylammonium bromide (CTAB)/n-octane/n-butanol/water microemulsion-mediated solvothermal process. The structure, morphology, and optical properties were systematically characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), and photoluminescence (PL) spectra as well as the kinetic decays, respectively. The XRD results reveal that the obtained Eu:HAp and Tb:HAp show the characteristic peaks of hydroxyapatite in a hexagonal lattice structure. It is observed that the as-prepared luminescent samples exhibit rod-like morphology with well dispersed and non-aggregated size distribution. Upon excitation by UV radiation, the phosphors demonstrate the characteristic 5D 0-7F 1-4 emission lines of Eu3+ and the characteristic 5D4-7F 3-6 emission lines of Tb3+. Moreover, the photoluminescence intensities (PL) of Eu3+ and Tb3+ can be tuned by altering the solvothermal temperature and the doping concentration of Eu3+ and Tb3+.  相似文献   

11.
Two porous organic polymer nanotubes(PNT-2 and PNT-3) were synthesized via Ni-catalyzed Yamamoto reaction, using2,4,6-tris-(4-bromo-phenyl)-[1,3,5]-triazine(TBT) as one monomer, and 2,7-dibromopyrene(DBP) or 1,3,6,8-tetrabromopyrene(TBP) as another monomer. The scanning electron microscope(SEM) images show that both PNT-2 and PNT-3 possess clear hollow tube structures. Luminescent measurements indicate that both PNT-2 and PNT-3 can serve as luminescent probe for highly selective and sensitive detection of Fe~(3+) by luminescent quenching effect. Absorption competition quenching(ACQ) mechanism is also proposed to explain luminescent quenching behavior, i.e., the overlap of the UV-spectra between Fe~(3+) and PNTs causes the energy competition, and therefore leads to luminescent quenching. Moreover, both PNT-2 and PNT-3 still show high selectivity and sensitivity for sensing Fe~(3+) in 10% ethanol aqueous solution, which means that the two porous PNTs are promising candidates as luminescent probes for detecting Fe~(3+) in practical applications.  相似文献   

12.
Uniform LnPO(4).x H(2)O (Ln=Y, La-Nd, Sm-Lu) nanocrystals that have controllable 0D (spherelike), 1D (rodlike), and 2D (polygonlike) structures have been systematically synthesized by means of a hydrothermal method by using a mixed solvent of water and ethanol. Transmission electron microscopy images and SEAD (selected area electron diffraction) patterns revealed that the products are highly crystalline and have structurally uniform shapes. IR, Raman, and electron energy loss spectroscopies gave spectra that indicated that an amount of oleic acid molecules were presented at the surface of individual nanocrystals. These nanocrystals have hydrophobic surfaces and could be easily dispersed in nonpolar solvents. Moreover, a creditable synthetic mechanism for nucleation, growth, and shape evolution has been proposed. Eu(3+) doped products were also prepared by using the same synthetic process. The Eu(3+) doped products exhibited an orange-red luminescence that is ascribed to an electron transition within the 4f shell. Analysis of the photoluminescent spectra revealed that the optical properties are strongly dependent on their morphologies.  相似文献   

13.
Liang X  Wang X  Zhuang J  Peng Q  Li Y 《Inorganic chemistry》2007,46(15):6050-6055
In this article, branched NaYF(4) nanocrystals have been successfully synthesized via a simple hydrothermal method. On the basis of the analysis of HRTEM and TEM images, the growth modes of the branched structure and further branching behavior have been proposed. The up- and down-conversion luminescence of branched NaYF(4):Er(3+)/Yb(3+) and NaYF(4):Eu(3+) have been characterized. Multiarmed NaYF(4) phosphors can be introduced into polystyrene to form composite luminescent polymers because of its special geometrical shape. In conclusion, the luminescent branched particles should be of wide potential application as building blocks in the future nanoscience and nanotechnology.  相似文献   

14.
Detection of chelatable zinc (Zn(2+)) in biological studies has attracted much attention recently, because chelatable Zn(2+) plays important roles in many biological systems. Lanthanide complexes (Eu(3+), Tb(3+), etc.) have excellent spectroscopic properties for biological applications, such as long luminescence lifetimes of the order of milliseconds, a large Stoke's shift of >200 nm, and high water solubility. Herein, we present the design and synthesis of a novel lanthanide sensor molecule, [Eu-7], for detecting Zn(2+). This europium (Eu(3+)) complex employs a quinolyl ligand as both a chromophore and an acceptor for Zn(2+). Upon addition of Zn(2+) to a solution of [Eu-7], the luminescence of Eu(3+) is strongly enhanced, with high selectivity for Zn(2+) over other biologically relevant metal cations. One of the important advantages of [Eu-7] is that this complex can be excited with longer excitation wavelengths (around 340 nm) as compared with previously reported Zn(2+)-sensitive luminescent lamthanide sensors, whose excitation wavelength is at too high an energy level for biological applications. The usefulness of [Eu-7] for monitoring Zn(2+) changes in living HeLa cells was confirmed. This novel Zn(2+)-selective luminescent lanthanide chemosensor [Eu-7]should be an excellent lead compound for the development of a range of novel luminescent lanthanide chemosensors for biological applications.  相似文献   

15.
Two Eu(III) complexes, (tris-4,4,4-trifluoro-1-phenyl-1,3-butanedione)(1,10-phenanthroline)europium(III) [Eu(tpb-H)3(phen)] and (tris-4,4,4-trifluoro-1-phenyl-1,3-butanedione)(2,2′-bipyridine)europium(III)[Eu(tpb-H)3-(bipy)] were synthesized from bi-dental oxygen and nitrogen ligands. Luminescent polymers were fabricated by incorporating deuterated Eu(III) complexes in poly(methylmethacrylate)(PMMA) matrixes. Luminescent PMMA containing Eu(tpb-D)3(phen) exhibited relatively higher quantum yield[Φ, (48.7±4)%], faster radiation rate(kr, 7.49×102 s-1), sharper red emission[full width at half maximum(FWHM), 6.3 nm] and larger stimulated emission cross-section (SEC, 1.29×10-20 cm2). The value of SEC is the same order as that of Nd-glass laser for practical use. Additionally, the thermal properties of Eu(tpb-H)3(phen), Eu(tpb-H)3(bipy), Eu(tpb-D)3(phen)-PMMA, and Eu(tpb-H)3(bipy)-PMMA were studied, indicating that the Eu(III) complexes and luminescent PMMA can be used for a long-term period in high temperature environment. Prepared luminescent polymers including Eu(tpb-D)3(phen) have promising applications in novel organic Eu(III) devices, such as the high-power laser materials and optical fibers.  相似文献   

16.
采用熔盐法合成了YVO4∶Sm3+红色发光材料. 用X射线粉末衍射对其结构进行表征, 证实样品为具有锆石结构的YVO4相; 测定了样品的激发与发射光谱; 分析了不同的掺杂浓度和烧结温度对样品发光强度的影响. 研究结果表明, 采用熔盐法合成的样品均可以产生Sm3+的特征发射, 但是与其它方法相比, 熔盐法合成样品位于647 nm处Sm3+的4G5/2-6H9/2发射明显得到加强, 从而使得样品发出明亮的红光, 而不是其它合成方法获得的橙色光. 当掺杂浓度为1%(摩尔分数)且在500 ℃下烧结5 h后, 熔盐法得到的YVO4∶Sm3+荧光粉的发光强度最大.  相似文献   

17.
A comprehensive survey of electronic structure and optical properties of rare-earth ions-doped semiconductor is of vital importance for their potential applications. In this work, Eu(3+)-doped β-Ga(2)O(3) nanocrystals were synthesized via a combustion method. The evolution of the optical properties of nanophosphors with increasing the annealing temperature was investigated in detail by means of excitation and emission spectra at room temperature and 10 K. Eu(3+) ions were proved to be incorporated into the crystal lattice of the β-Ga(2)O(3) phase after annealing the as-prepared nanoparticles at 1100 °C. It was observed that the substitution of Eu(3+) for Ga(3+) occurred at merely single site, in spite of two crystallographically nonequivalent sites of Ga(3+) in β-Ga(2)O(3). Spectroscopic evidence corroborated and clarified the local symmetry of C(s) for Eu(3+) at this single site. From the high-resolution excitation and emission spectra, 71 crystal-field levels of Eu(3+) in β-Ga(2)O(3) were identified and analyzed in terms of 19 freely varied free-ions and crystal-field parameters based on C(s) symmetry. The standard deviation of the final fitting is as low as 12.9 cm(-1), indicating an excellent agreement between experimental and calculated energy levels. The temperature-dependent luminescence dynamics of the (5)D(0) multiplet for Eu(3+) in β-Ga(2)O(3) phosphors has also been revealed for the first time from 10 to 300 K.  相似文献   

18.
The emission spectra of luminescent trivalent europium (Eu3+) and terbium (Tb3+) complexes were measured using a microscope laser Raman spectrometer with a doubled Nd:YAG laser (532 nm) and an Ar laser (488 nm). Excitation at 532 and 488 nm corresponded to wavelengths of the 7F1 --> 5D1 band of Eu3+ and the 7F6 --> 5D4 band of Tb3+, respectively. The Eu3+ and Tb3+ complexes were discriminated by high-resolution emission spectra more distinctly and sensitively than by fluorescence spectrometry, the usual analytical method.  相似文献   

19.
Monoclinic Gd(1-x)Eu(x)BO(3) nanopowders were successfully synthesized using a modified Pechini method. The crystal structure of the prepared materials was revised and confirmed using several techniques such as: IR, XRD, TEM, Raman spectroscopy and EDX analysis. The obtained material was comprised of particles, consisting of parts with the average size 350 nm. The luminescence properties of the prepared phosphors with different concentrations of Eu(3+) ions were characterized by excitation and emission spectra and its kinetic decay. The Judd-Ofelt parameters (Ω(2), Ω(4)), quantum efficiency, η, and chromaticity coordinates were also calculated.  相似文献   

20.
A family of monodisperse YF(3), YF(3):Ce(3+) and YF(3):Ce(3+)/Ln(3+) (Ln=Tb, Eu) mesocrystals with a morphology of a hollow spindle can be synthesized by a solvothermal process using yttrium nitrate and NH(4) F as precursors. The effects of reaction time, fluorine source, solvents, and reaction temperature on the synthesis of these mesocrystals have been studied in detail. The results demonstrate that the formation of a hollow spindle-like YF(3) can be ascribed to a nonclassical crystallization process by means of a particle-based reaction route in ethanol. It has been shown that the fluorine sources selected have a remarkable effect on the morphologies and crystalline phases of the final products. Moreover, the luminescent properties of Ln(3+)-doped and Ce(3+)/Ln(3+) -co-doped spindle-like YF(3) mesocrystals were also investigated. It turns out that Ce(3+) is an efficient sensitizer for Ln(3+) in the spindle-like YF(3) mesocrystals. Remarkable fluorescence enhancement was observed in Ce(3+)/Ln(3+) -co-doped YF(3) mesocrystals. The mechanism of the energy transfer and electronic transition between Ce(3+) and Ln(3+) in the host material of YF(3) mesocrystals was also explored. The cytotoxicity study revealed that these YF(3) -based nanocrystals are biocompatible for applications, such as cellular imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号