首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 548 毫秒
1.
为更加准确地计算93钨合金弹超高速撞击Q345钢板问题,构建了修正的金属本构模型。引入GRAY三相物态方程描述材料相态变化,采用Johnson-Cook强度模型描述撞击后期材料的力学行为。结合封加波损伤演化模型以及Johnson-Cook失效模型描述不同应力三轴度下材料的拉伸、剪切失效行为;引入曹祥提出的断裂演化模型,描述材料失效后应力归零的过程。通过对比超高速撞击数值模拟结果与实验结果,验证了本构模型的适用性,并进一步分析了典型弹靶撞击条件下破片群的空间分布特征。研究结果表明:基于修正金属本构模型获得的超高速撞击靶板穿孔直径、弹体侵蚀长度、破片群扩展速度结果与实验结果一致;GRAY三相物态方程能够相对准确地给出弹体撞击首层靶板以及剩余弹体、破片群撞击第2层靶板时弹靶材料的熔化情况;封加波损伤演化模型能够准确判断超高速撞击过程中靶板是否产生层裂破坏;综合封加波损伤演化模型、Johnson-Cook失效模型以及曹祥提出的断裂演化模型后,数值模拟获得的破片群撞击后效靶板的穿孔面积与累积数量的统计曲线结果与实验结果一致;获得了典型条件下的柱形93钨弹体超高速撞击Q345靶板破片群空间分布结果,破片群的前端具有较高的质量、轴向动量以及横向动量(绝对值)。  相似文献   

2.
超高速撞击厚靶过程的能量分配研究   总被引:1,自引:0,他引:1  
超高速撞击过程的能量分配研究,对于解决动能撞击、发展导弹拦截技术、判定空间飞行器被撞事件及评估碰撞破坏程度具有重要的理论意义。本文在总结前人关于超高速撞击过程能量分配的基础上,将超高速撞击厚靶过程中弹丸的动能分配归纳为靶板的变形能、弹丸与靶板作用过程应力波传播使靶板内能的增加、撞击产生碎片的崩溅能和产生电磁辐射的辐射能,并结合理论推导、实验和数值模拟对撞击速度为2.61km/s且正碰撞2A12铝靶的能量分配进行了定量计算。研究结果表明:无论在弹坑的形貌、尺寸还是辐射温度等方面,实验测量结果、理论推导结果与数值模拟的结果均基本吻合。该研究成果在解决行驶中的车辆碰撞问题以及航空飞行器遭遇鸟撞等领域亦有重要的参考价值。  相似文献   

3.
为了对不同靶板被尖头弹丸低速侵彻条件下的弹性恢复机理进行研究,同时考虑弹丸低速冲击靶板过程中靶板整体塑性变形及弹性变形恢复,更好地反映弹丸对靶板低速侵彻过程中的变形及材料失效问题,使用非线性动力学分析软件ANSYS/LS-DYNA计算分析了弹丸以相同速度冲击不同边长、厚度靶板时,弹丸反弹速度以及靶板回弹速度随着靶板厚度...  相似文献   

4.
武强  张庆明  龚自正  任思远  刘海 《爆炸与冲击》2021,41(2):021406-1-021406-9
以二级轻气炮作为加载手段,针对以PTFE/Al活性材料为防护屏的Whipple防护结构,开展不同弹丸尺寸、不同碰撞速度的超高速撞击实验。利用激光阴影照相设备,获得并分析了碎片云特性;通过回收的防护结构靶板,研究了活性材料防护结构超高速撞击条件下的后板损伤特性;通过与经典Christiansen撞击极限方程对比,获得活性材料Whipple结构防护性能,并拟合得到新型防护结构的撞击极限曲线。结果表明,相较于同面密度铝合金材料,活性材料超高速撞击条件下的冲击起爆反应使得碎片云中具有侵彻能力的碎片大幅减少,从而显著提升航天器的防护能力,撞击速度为2.31 km/s时最大可提升45%。  相似文献   

5.
李名锐  冯娜  蔡青山  陈春林  马坤  尹立新  周刚 《爆炸与冲击》2021,41(2):021408-1-021408-13
为了解杆式弹超高速撞击多层薄钢靶的破坏过程及毁伤机理,开展了克级93W杆式弹正撞击多层Q345钢靶实验及数值模拟研究,通过扫描电子显微镜(scanning electron microscope,SEM)及金相显微镜,分析了超高速撞击实验后靶板材料的微观组织及成分。结果表明,超高速撞击作用下,靶板呈现出“翻唇”穿孔变形、花瓣状塑性变形、撕裂、撞击成坑及鼓包等破坏模式。靶板前3层毁伤以超高速穿孔为主,孔洞数目多但面积小,后几层靶板毁伤孔洞数目少且孔径呈先增大后减小趋势。微观分析表明靶材在强冲击压力下发生晶粒碎化、熔化及再结晶,撞击过程中会形成微孔聚集与微裂纹,可见靶板失效主要是熔融混合物冷却过程中产生的热应力与切应力下的剪切撕裂综合作用的结果。  相似文献   

6.
用Ф22×64mm的聚碳酸酯(PC)圆柱形弹丸,以172m/s~234m/s的速度撞击刚性靶板,用幅频为4.05×104幅/秒的高速数字相机记录了PC弹丸撞击时的变形过程,用PVDF测力薄膜测定了弹丸头部与刚性靶表面碰靶过程的应力-时间曲线,获得了可供建立分析模型参考的实验数据。采用Syomds-Cowper过应力模型对PC材料应变率敏感性进行了初步分析,根据经典的Taylor理论计算了PC的名义应变率和相应的动态流动应力,其结果与实验数据基本一致。  相似文献   

7.
采用硅酸盐质弹丸模拟低密度脆性微流星体,开展了航天器典型Whipple 防护结构撞击实验研究,获得了低密度微流星体弹丸损伤模式和损伤规律,实验表明,当弹丸撞击速度在1.1~1.4 km/s,前板损伤模式从花瓣式开裂转变为穿孔,当速度为1.4 km/s 时后板鼓包头上出现裂纹;随着弹丸速度的进一步增加,后板出现剥落现象,并形成花瓣撕裂,当弹丸撞击速度达到1.95 km/s 时后板被击穿,导致防护结构受到破坏.  相似文献   

8.
飞机加强蒙皮在12.7 mm弹丸撞击下的变形与破坏   总被引:18,自引:0,他引:18  
为了研究飞机蒙皮在12.7 mm标准机枪弹丸射击下的损伤,对3 mm厚LY-12 CZ材料的单蒙皮及其加筋板进行了模拟弹击试验。通过试验研究,建立了一个由高速气炮、弹体与弹托分离机构、连续位移激光测速装置和弹丸回收装置组成的系统并被有效地用于弹丸正撞击试验。通过对四边固支的3 mm厚蒙皮用12.7 mm直径弹丸进行速度约60~300 m/s的正撞击试验,结果表明,靶板从微小损伤到完全击穿;弹击造成的变形区有效直径随弹丸速度的增大呈幂指数趋势下降;弹击引起的变形深度随弹丸撞击速度的增加呈直线下降;靶板上的应变随弹丸速度的增加逐渐降低。弹丸剩余速度随弹丸撞击速度的增加呈直线上升。最后利用DYNA3D程序对单蒙皮及其加筋板进行了弹击数值模拟,模拟结果与弹击试验结果较吻合。  相似文献   

9.
采用非火药驱动二级轻气炮发射球形弹丸,对单层5A06铝合金板进行高速撞击实验研究,从而模拟空间碎片对航天器防护结构的高速撞击作用。实验得到了该铝合金板在不同的速度区间的损伤模式。结果表明,弹丸撞击速度一定时,弹坑深度和弹坑直径均与弹丸直径呈线性关系。当撞击速度在4km/s至5km/s时,靶板上的弹坑深度和弹坑直径随撞击速度的增大而减小,在其它速度范围内,弹坑深度和弹坑直径随撞击速度的增大而增大。通过固定弹丸直径,变化撞击速度,寻找临界撞击速度的方法获得了该铝合金板在弹丸撞击速度为1.0km/s至4.2km/s时的撞击极限曲线,并将实验弹坑深度与由Cour-Palais方程得到的预测弹坑深度进行了比较,实验弹坑深度大于预测值。  相似文献   

10.
空间碎片超高速撞击是典型的高温、高压、高应变率的极限力学问题,涉及材料复杂的动态响应,对传统的数值方法提出了巨大挑战。最优运输无网格(OTM)方法通过有机结合最优运输时间积分理论、局部最大熵无网格近似、物质点抽样、基于物理的裂纹扩展算法以及大规模并行计算策略,克服了传统数值方法瓶颈,在理论上保证了不同形式能量耗散的自主耦合分配,为超高速撞击仿真预测提供了高效的解决方案。采用基于OTM方法自主研发的极限力学仿真软件ESCAAS,对不同质量(3、10 g)的铜飞片以不同撞击角度(5.4°、11.7°)和不同撞击速度(5.55、5.12 km/s)撞击铝合金靶板的过程进行数值模拟,获得碎片云的形貌、靶板穿孔孔径等结果,与实验测量数据吻合良好,显示出OTM方法及ESCAAS软件可以作为超高速撞击的有力数值分析手段。  相似文献   

11.
利用空气炮为加载设备,开展了不同头部形状聚碳酸酯弹丸的穿甲实验,获得了弹体穿甲时靶板 的变形时间历程曲线及弹靶相互作用时间,观察到不同弹体在穿甲过程中产生的断裂、内部损伤及头部塑性 变形等失效特征。采用光塑性方法,分析了截锥型聚碳酸酯弹丸穿甲后的变形特征,通过用户子程序将DSGZ 模型引入商用有限元程序,对截锥型聚碳酸酯弹丸的穿甲过程进行了数值模拟,获得了不同时刻聚碳酸 酯弹丸应力分布及靶板的变形特征,模拟结果与实验结果吻合较好。  相似文献   

12.
铝合金Whipple防护结构高速撞击实验研究   总被引:9,自引:1,他引:9  
为了掌握航天器防护结构受空间碎片高速撞击的损伤破坏模式及其防护性能,采用二级轻气炮发射球形弹丸,对铝合金Whipple防护结构进行高速撞击实验研究。根据实验结果分析了铝合金Whipple防护结构的防护屏和舱壁在不同速度区间的损伤模式特征,以及薄铝板防护屏高速撞击穿孔和舱壁弹坑分布随弹丸直径、弹丸撞击速度变化的规律。通过固定弹丸直径,改变弹丸撞击速度,寻找临界撞击速度的方法获得了铝合金Whipple防护结构在0.5~5.5 km/s撞击速度区间内的撞击极限曲线,并与由Christiansen撞击极限方程得到的撞击极限曲线进行了比较,结果表明,实验最小临界弹丸直径略大于预测值。  相似文献   

13.
球形弹丸超高速正撞击薄板破碎状态实验研究   总被引:2,自引:0,他引:2  
利用闪光X射线照相系统拍摄了直径6.35 mm的铝球以2.23~5.26 km/s的速度正撞击薄铝板的过程并对该过程进行了分析,研究了弹丸从塑性变形到完全破碎的发展过程。给出了球形弹丸内部应力波传播的定性描述,提出弹丸形态变化包括3个阶段。在塑性变形阶段,弹丸变形随撞击速度和板厚的增大而增大;弹丸主体部分发生临界破碎时的撞击速度随薄板厚度增大而减小,当板厚超过一定值时,该速度基本相同,不受板厚影响;在完全破碎阶段,随撞击速度的增加,弹丸主体部分材料的径向速度增大,碎片尺寸减小,数量增多。  相似文献   

14.
陈海波  贾斌  王少恒 《实验力学》2013,28(3):333-339
冰弹丸的高速发射技术是认识冰弹丸高速撞击靶板损伤效应的瓶颈技术。利用二级轻气炮作为发射装置,采用液氮杜瓦制冷系统实现温度控制,选择铝质膜片对气压进行控制,利用高速摄像机对冰弹丸的完整性进行观测,并利用丝网测速仪对弹丸速度进行测量,实现了对冰弹丸的高速发射。通过实验验证了该方法的可行性,得到了完整冰弹丸在1516m/s下撞击铝合金靶板的实验结果。  相似文献   

15.
低地球轨道上的航天器易受到微流星体和空间碎片的超高速撞击,导致其严重损伤甚至灾难性的失效。撞击损伤特性研究是航天器防护设计的重要问题。本文采用非火药驱动二级轻气炮发射球形弹丸,对铝双层板结构进行超高速撞击实验研究,从而模拟空间碎片对航天器防护结构的超高速撞击作用。实验得到了铝双层板结构在弹丸撞击速度为2.33±0.12km/s和4.36±0.10km/s两种情况时,其前板和后板的撞击损伤随前板厚度变化的规律,随着前板厚度的增加,前板穿孔直径增大,后板撞击中心的损伤减轻,后板上大弹坑由撞击中心移至外围。当撞击速度超过弹丸破碎速度时,后板上将出现弹坑密集分布区。实验结果表明,前板厚度的选取对双层板结构的撞击损伤区域会产生影响。  相似文献   

16.
平头弹丸正撞下钢筋混凝土靶板厚度方向的开裂   总被引:1,自引:0,他引:1  
主要针对钢筋混凝土靶板在受到平头弹丸撞击下发生的厚度方向开裂的问题进行研究,并提出了一个弹丸低速撞击有限厚度板的二阶段模型。模型中第一阶段为侵彻阶段,弹丸受到混凝土介质的侵彻阻力由静阻力和速度效应引起的动阻力组成;模型中第二阶段为开裂阶段,钢筋混凝土靶板发生动态剪切破坏的最大承载力可以通过静态剪切破坏最大承载力乘以一个动态增强因子得到。该模型可以用来预测钢筋混凝土靶板发生厚度方向开裂破坏的临界能量。模型预测与实验结果吻合较好。  相似文献   

17.
非球弹丸超高速撞击航天器防护结构数值模拟   总被引:2,自引:0,他引:2  
采用AUTODYN软件对非球弹丸超高速正撞击航天器单防护屏防护结构进行了数值模拟,给出了2维及3维模拟的结果。研究了在相同质量和速度的条件下,不同形状弹丸长径比、撞击方向等对超高速撞击防护结构所产生碎片云特性及舱壁损伤尺寸的影响,并与球形弹丸撞击所产生的碎片云及舱壁损伤进行了比较。结果表明:弹丸的长径比越大,弹丸的穿孔能力越强;非球弹丸的撞击方向不同,所产生的碎片云形状、质量分布、破碎的程度和穿孔的能力是不同的。  相似文献   

18.
为研究7A04-T6高强铝合金板受不同形状破片撞击的抗撞击性能、损伤特性及吸能规律,利用有限元软件ABAQUS/Explicit建立了3种典型形状破片侵彻两种厚度的单层及等厚度接触式双层7A04-T6高强铝合金靶板模型,分析了破片形状、靶板结构对靶板抗撞击性能、损伤特性、比能量吸收的影响规律及转变机制。研究发现:圆锥形破片撞击时弹道极限最高,其次为圆球形、圆柱形破片;对于圆球形、圆锥形破片撞击工况,薄靶和厚靶分层均降低其抗撞击性能;圆柱形破片撞击时,薄靶分层降低其抗撞击性能,厚靶分层将提高其抗撞击性能。靶板损伤特性、比能量吸收也受到破片形状和靶板结构影响,但不同因素的作用机制及影响程度并不相同。  相似文献   

19.
为研究碳纤维/环氧树脂复合材料在超高速撞击下的成坑特性,利用二级轻气炮开展了直径为1.00~3.05 mm的铝球以3.0~6.5 km/s的速度正撞击尺寸为100 mm×100 mm×20 mm的碳纤维/环氧树脂复合材料靶板的实验,获得了碳纤维/环氧复合材料靶板的成坑形貌特征,并测量了坑深、成坑表面积、表面损伤面积等尺寸。结合文献数据分析了靶板的无量纲成坑深度p/dp、无量纲坑径系数Dh/dp、表面损伤面积等效直径De等随撞击速度、撞击能量的变化规律。结果表明:碳纤维/环氧树脂复合材料的无量纲成坑深度p/dp和无量纲坑径系数Dh/dp均与撞击速度呈2/3次幂关系;表面损伤面积等效直径De与弹丸撞击能量E呈幂函数关系;成坑深度大于成坑半径。  相似文献   

20.
将包含众多不同规则微裂纹的混凝土材料视为等效微裂纹系统,结合细观微裂纹动力律与波动理论,确定了裂纹演化与应力波传播的内在关系;根据有核长大思想和能量耗散理论,建立了一种便于工程应用的混凝土类准脆性材料拉伸损伤演化方程,并由混凝土单轴拉伸实验确定了相关材料参数;进行了混凝土平板撞击和内爆炸所引起的波传播和层裂问题的数值计算。结果表明:混凝土靶板的自由面速度时程曲线呈现明显周期性震荡,震荡周期与应力波在裂片中往返一次的时间基本相同;混凝土靶板损伤空间分布和损伤云纹图与已有实验结果一致,验证了本文所建立的微裂纹型拉伸损伤模型的科学实用性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号