首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Dynamic photoelasticity was employed to determine the velocity of longitudinal stress waves, dynamic modulus of elasticity and attenuation coefficients in rockcore samples 1 in. (25 mm) in diameter, 18 in. (0.46 m) long. Birefringent strips bonded to the core samples of Salem limestone, Charcoal granite and Berea sandstone provided all the data needed for the dynamic characterization of these rock types. The rods were dynamically loaded at one end with a lead-azide charge. A multiple-spark-gap camer was used to record the dynamic isochromatic-fringe patterns occurring in the birefringent strip. Of the three rock types investigated, the Berea sandstone exhibited the largest energy losses as characterized by an attenuation coefficient of 0.0910. Salem limestone and Charcoal granite exhibited much smaller losses with attenuation coefficients of 0.0196 and 0.0024, respectively. The extremely low-energy loss associated with Charcoal granite indicates that this material transmits stress waves as well as most metals.  相似文献   

2.
Capillary pressure curves of six low porosity and low permeability core samples from The Geysers geothermal field were measured using the mercury-intrusion approach to characterize the heterogeneity of rock. One high permeability Berea sandstone core sample was analyzed similarly, for comparison. The maximum pressure of mercury intruded into the rock was about 200 MPa to reach the extremely small pores. Experimental data showed that the capillary pressure curves of The Geysers rock are very different from that of the Berea sandstone. It was found that the frequently used capillary pressure models could not be used to represent the data from The Geysers rock samples. This might be because of the fractures in the rock. To this end, a fractal technique was proposed to model the features of the capillary pressure curves and to characterize the difference in heterogeneity between The Geysers rock and Berea sandstone. The results demonstrated that the rock from The Geysers geothermal field was fractal over a scaling range of about five orders of magnitude. The values of the fractal dimension of all the core samples (six from The Geysers and one Berea sandstone) calculated using the proposed approach were in the range from 2 to 3. The results showed that The Geysers rock with a high density of fractures had a greater fractal dimension than Berea sandstone which is almost without fractures. This shows that The Geysers rock has greater heterogeneity, as expected.  相似文献   

3.
By utilizing fractal dimension as one of the parameters to characterize rocks, a mathematical model was derived to predict the production rate by spontaneous imbibition. This fractal production model predicts a power law relationship between spontaneous imbibition rate and time. Fractal dimension can be estimated from the fractal production model using the experimental data of spontaneous imbibition in porous media. The experimental data of recovery in gas-water-rock and oil–water–rock systems were used to test the fractal production model. The rocks (Berea sandstone, chalk, and The Geysers graywacke) in which the spontaneous water imbibition experiments were conducted had different permeabilities ranging from 0.5 to over 1000 md. The results demonstrate that the fractal production model can match the experimental data satisfactorily in the cases studied. The fractal dimension data inferred from the model match were approximately equal to the values of fractal dimension measured using a different technique (mercury-intrusion capillary pressure) in Berea sandstone.  相似文献   

4.
红砂岩路基土动态模量影响因素及预估模型研究   总被引:1,自引:0,他引:1  
为研究红砂岩路基土动态模量的影响因素,采用室内重复加载三轴试验。结合红砂岩路基土在不同含水率时的动态模量,分析偏应力、体应力和含水率对红砂岩路基土动态模量的影响;采用三参数复合模型进行回归,并通过有限元计算和实体工程现场检测,建立室内试验动态模量与现场检测动态模量的回归关系。研究结果表明,动态模量随体应力(或围压)增大而增大,随偏应力增大而减小;随着含水率的增大,动态模量呈先增大后逐步减少的趋势。三参数复合预估模型与试验检测结果之间具有较高相关性。此外,红砂岩路基土室内试验动态模量与现场检测动态模量具有良好的回归关系,室内试验动态模量与现场检测动态模量可以实现有效换算。  相似文献   

5.
为了深入地了解岩石的阻尼特性,利用WDT–1500多功能材料试验机,对砂岩、砾岩和砂砾岩进行了循环荷载试验,研究了岩石的动剪切模量和阻尼参数对应力、应变幅值和应力水平的响应特性,得到了动弹性模量和阻尼参数随应力幅值、应力水平及含水率的变化规律,讨论了其变化机理。证实了双曲线关系能够描述分级循环荷载作用下岩石的应力-应变关系,得到了动剪切模量和阻尼比与动应力、动应变之间的关系,建立了不同应力水平和不同应力幅值条件下岩石的动剪切模量与阻尼比关系模型,结果表明该模型能够描述分级循环荷载过程中阻尼行为。  相似文献   

6.
姜亚成  周磊  朱哲明  李剑飞  牛草原  应鹏 《爆炸与冲击》2021,41(4):043104-1-043104-11
以寒区隧道为工程背景研究在冻融循环作用下围岩内Ⅰ型裂纹的动态起裂特性演化规律,采用隧道模型试件作为研究对象,开展冻融循环试验与大尺度落锤冲击试验,得到岩石试件经历不同冻融循环次数后的相关力学参数,并在裂纹尖端粘贴裂纹扩展计(crack propagation gauge, CPG)测量预制裂纹的动态起裂时间。采用有限元软件建立相应的数值模型计算裂纹尖端的动态应力强度因子,采用试验-数值法计算动态起裂韧度,随后采用电镜对冻融循环后的试样进行扫描,研究冻融循环对岩石材料的细观损伤机制。研究结果表明:随着冻融循环次数的增加,岩石材料的纵波、横波波速与弹性模量逐渐减小,而泊松比逐渐增大;砂岩材料的动态起裂韧度随着冻融循环次数的增加逐渐减小,表征线性反比例的特性;材料内部的胶结物质会由于冻融循环的影响而流失,材料的孔隙和裂纹也随着冻融循环次数的增加而变多变大。  相似文献   

7.
We present a validated fully 3D mechanism-based micromechanical constitutive model for brittle solids under dynamic multiaxial loading conditions. Flaw statistics are explicitly incorporated through a defect density, and evolving flaw distributions in both orientation and size. Interactions among cracks are modeled by means of a crack-matrix-effective-medium approach. A tensorial damage parameter is defined based upon the crack length and orientation development under local effective stress fields. At low confining stresses, the wing-cracking mechanism dominates, leading to the degradation of the modulus and peak strength of the material, whereas at high enough confining stresses, the cracking mechanism is completely shut-down and dislocation mechanisms become dominant. The model handles general multiaxial stress states, accounts for evolving internal variables in the form of evolving flaw size and orientation distributions, includes evolving anisotropic damage and irreversible damage strains in a thermodynamically consistent fashion, incorporates rate-dependence through the micromechanics, and includes dynamic bulking based on independent experimental data. Simulation results are discussed and compared with experimental results on one specific structural ceramic, aluminum nitride. We demonstrate that this 3D constitutive model is capable of capturing the general constitutive response of structural ceramics.  相似文献   

8.
A study has been made of the removal of small particles from a porous material by means of ultrasonic irradiation. To that purpose a microscopic theoretical model has been developed to calculate the force of a traveling acoustic wave on a spherical particle attached to the wall of a smooth, cylindrical pore inside the porous material. This force was compared with the adhesion force between a small particle and a pore wall. From the comparison between the two forces the conditions were found, at which particles are detached from pore walls and removed from the porous material. The transformation of the results gained from the microscopic model to macroscopic property (permeability) of the porous material was made by means of the Kozeny relation. The aim is to be able to understand and predict qualitatively the influence of relevant parameters on the ultrasonic cleaning process. Predictions made with the theoretical model were compared with data from experiments carried out with ultrasound to remove particles from Berea sandstone. The agreement is reasonable.  相似文献   

9.
10.
This work investigates the nonlinear longitudinal forced vibrations of a bar with hysteretic dynamics typical of rocks and man-made geomaterials. The material properties are described by a constitutive relation that includes energy dissipation effects consistently with hysteretic dynamics. The harmonic balance method and a perturbation technique that uses the material's modulus defect as perturbation parameter are employed to solve the equation of motion. The spatial dependence of the modulus defect, which is disregarded in earlier solutions of this problem, is duly accounted for. According to this model, the resonance frequency shift is proportional to the amplitude of the excitation, while the inverse of the quality factor increases as the square root of the latter. Further, the spatial variation of the modulus defect is shown to affect the modulation of the fundamental component along the bar. The nonlinear spectral components are of odd order, with amplitude proportional to the maximum value of the modulus defect and to the square of the excitation's amplitude, and decreases non-monotonically with increasing harmonic order. The motivation for this work is twofold. Analytical models may improve our understanding of the dynamics of hysteretic materials in general, and of the mutual interaction of material defects in particular. Secondly, this work establishes a bench-mark result on a mathematically simple hysteretic system against which alternative mathematical approaches, possibly concerning material with complex constitutive relations, could be tested.  相似文献   

11.

We investigate the influence of contact angle variations on spontaneous imbibition of moisture in porous materials. While the contact angle is typically assumed constant when modelling the moisture transfer in porous media, experimental findings put this assumption into question. It has been shown that during imbibition the contact angle notably rises with increasing meniscus velocity. This phenomenon resultantly affects the moisture retention curve, the relation linking the local capillary pressure to the local moisture saturation, which in turn impacts the imbibition rate and moisture distribution. This study investigates these dynamic effects via a pore network technique as well as a continuum approach. It is shown that the impacts of pore-scale contact angle variations on the imbibition process can be reproduced at the continuum scale through a modified moisture retention curve including a dynamic term. Complementarily a closed-form equation expressing the dynamic capillary pressure in terms of local saturation and saturation rate is derived. The continuum approach is then finally employed to predict measured moisture saturation profiles for imbibition in Berea sandstone and diatomite found in literature, and a fair agreement between simulated and measured outcomes is observed.

  相似文献   

12.
13.
We investigated the mechanism of residual gas trapping at a microscopic level. We imaged trapped air bubbles in a Berea sandstone chip after spontaneous imbibition at atmospheric pressure. The pore structure and trapped bubbles were observed by microfocused X-ray computed tomography. Distributions of trapped bubbles in Berea and Tako sandstone were imaged in coreflooding at a capillary number of 1.0 × 10−6. Trapped bubbles are of two types, those occupying the center of the pore with a pore-scale size and others having a pore-network scale size. In low-porosity media such as sandstone, connected bubbles contribute greatly to trapped gas saturation. Effects of capillary number and injected water volume were investigated using a packed bed of glass beads 600μm in diameter, which had high porosity (38%). The trapped N2 bubbles are stable against the water flow rate corresponding to a capillary number of 1.0 × 10−4.  相似文献   

14.
米箭沟尾矿坝料动力特性试验研究   总被引:4,自引:0,他引:4  
本文对米箭沟尾矿坝料的组成、结构特征和物理力学性质进行分析,运用振动三轴试验确定尾矿坝料的动力特性参数,分析研究动力特性指标模型,得出动应力、动模量、阻尼比、动剪切摸量随动应变的变化规律,以及动应力与破坏振次,孔压比与振次比的变化规律,并提出符合试验结果的孔压模型,对该尾矿坝的地震动力分析及抗震稳定性评价提供一定科学依据和技术指导。  相似文献   

15.
贺云  李海滨  杜娟 《力学季刊》2022,43(2):406-415
固体火箭发动机药柱粘弹性材料除具有弹塑性特性,还具有粘滞性,这一特性使得材料变形具有明显的时间效应,本构关系复杂,进行动态力学分析时,动态模量难以有效拟合.本文提出了一种基于(Levenberg-Marquardt, L-M)算法的复数神经网络拟合粘弹性材料动态模量的方法.通过广义Maxwell模型推导得到材料的动态模量表达式,以此构造未定网络参数为复数的神经网络,从而提供了一种输入、输出样本均为复数的神经网络解决方法.将实数L-M训练算法进行改进,衍生到复数领域,提出复数L-M训练算法.通过粘弹性材料实验,将实验数据时温等效转换,获得复数神经网络的训练及测试样本.通过对神经网络进行训练,实现粘弹性材料动态模量的高精度拟合.数值算例表明,与传统神经网络拟合方法相比,所提方法在训练速度和泛化能力方面都有其优越性.  相似文献   

16.
超声纯横波法测试45#钢的内部应力   总被引:1,自引:1,他引:1  
魏勤  董师润  徐颖梅 《实验力学》2007,22(6):588-592
声各向同性的金属材料在应力作用下,材料表现出声各向异性,这是用声弹性法分析材料内部应力的基础。本文用垂直于应力方向传播的超声纯横波对45#钢进行测试,测试时横波的偏振化方向分别平行和垂直于应力方向。实验结果表明:材料在拉、压应力作用下,相互正交的两超声纯横波的声速都发生了变化,且声各向异性因子与应力成线性关系。利用此关系可测试材料内部应力,提供了一种无损测试材料内部应力的方法,另外本实验方法也可以对材料内部残余应力进行评估。实验中利用回振法测量声速,可测量声速的微小变化,精度高。  相似文献   

17.
In order to ensure long-term stability of structures in a rock mass, the study of time-dependent fracturing is essential. The influences of the surrounding environmental conditions and rock fabric on subcritical crack growth in sedimentary rocks in air are yet to be clarified, while the nature of subcritical crack growth in igneous rocks has been studied well. In this study, the influences of temperature and relative humidity on subcritical crack growth in Berea sandstone, Shirahama sandstone and Kushiro sandstone were investigated in air. The load relaxation method of Double Torsion (DT) testing method was used to measure both crack velocity and stress intensity factor under a controlled temperature and relative humidity.Results show that the change of the crack velocity at a given stress intensity factor was unclear when the temperature increased under a constant relative humidity in air. On the other hand, we show that the crack velocity increased by several orders of magnitude when the relative humidity increased threefold or fourfold under a constant temperature at a given stress intensity factor. This increase is much larger than that expected from the conventional concept based on the theory of stress corrosion. It is therefore necessary to consider the additional mechanisms for subcritical crack growth in sandstone. The increase of the crack velocity was larger for sandstone which contained larger amount of clays. We conclude that subcritical crack growth in sandstone in air is affected remarkably by the relative humidity and the amount of clays in rock.  相似文献   

18.
Some recent advances in the theory of dynamic materials are listed in the paper. We discuss the technique used to determine the set of invariant characteristics of material mixtures in one spatial dimension and time, in the context of electrodynamics of moving dielectrics, versus the relevant results in traditional electrostatics. Some special features of dynamic materials demonstrated through a material design are advertised as well. Among them, we mention the possibility to eliminate the cut-off frequency in the waveguides with activated dielectric filling.  相似文献   

19.
利用分离式霍普金森压杆(SHPB),对粗砂岩、中等粒径砂岩和细砂岩进行了应变率为69~83 s–1的动态单轴抗压实验,研究了粒径尺寸效应对砂岩动力特性的影响。通过三维数字图像相关(3D-DIC)技术分析高速摄像图像,获得了砂岩的实时应变场,据此分析了动态荷载下3种粒径砂岩的动力变形特性和裂纹开展行为。结果表明,砂岩弹性应变储能可逆释放的临界应变率随着粒径的减小而升高,动态压缩强度随着粒径减小而增大,动态强度应变率敏感度则与强度规律相反。相较于静态条件下,中等粒径砂岩和细砂岩的动态弹性模量增长了2~3倍,粗砂岩的动态弹性模量增长达5倍以上。细砂岩的动态泊松比相较于静态提高了约25%,中等粒径砂岩的动态泊松比约为静态时的70%。动态裂纹首先出现于试件内部,然后传播至表面,呈现出应变局部化,动态荷载下岩石裂纹的孕育和扩展相比静态条件下均有所提前,其中细砂岩在动态荷载条件下的归一化裂纹起裂阈值仅为峰值强度的10%。微观分析表明,矿物粒径大小和黏土矿物含量分别在砂岩的动力力学性质和裂纹开展行为方面发挥主要作用。  相似文献   

20.
Different models of metamaterials have been developed to generate negative mass and/or negative modulus. The resulting mass and modulus in existing works, however, cannot be independently controlled. The current study presents a new representative cell of elastic metamaterials in an effort to provide a comprehensive model for generating negative mass and/or negative modulus. The current model consists of a series of properly arranged rigid bodies and linear springs. By introducing both translational and rotational motions in the representative cell, negative mass and negative modulus can be obtained in a controlled manner. The mechanisms and conditions under which negative mass and/or negative modulus can be achieved are studied in detail. Numerical examples indicate that by varying the design of the representative cell, different properties of the material system can be reliably generated, i.e., double negative (mass and modulus) or single negative (mass or modulus). The dynamic behaviour of the developed material system under different loading frequencies is evaluated and the longitudinal elastic wave propagation in such metamaterials is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号