首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In the last few years, a new term, “High-phenolic olive oil”, has appeared in scientific literature and in the market. However, there is no available definition of that term regarding the concentration limits of the phenolic ingredients of olive oil. For this purpose, we performed a large-scale screening and statistical evaluation of 5764 olive oil samples from Greece coming from >30 varieties for an eleven-year period with precisely measured phenolic content by qNMR. Although there is a large variation among the different cultivars, the mean concentration of total phenolic content was 483 mg/kg. The maximum concentration recorded in Greece reached 4003 mg/kg. We also observed a statistically significant correlation of the phenolic content with the harvest period and we also identified varieties affording olive oils with higher phenolic content. In addition, we performed a study of phenolic content loss during usual storage and we found an average loss of 46% in 12 months. We propose that the term high-phenolic should be used for olive oils with phenolic content > 500 mg/kg that will be able to retain the health claim limit (250 mg/kg) for at least 12 months after bottling. The term exceptionally high phenolic olive oil should be used for olive oil with phenolic content > 1200 mg/kg (top 5%).  相似文献   

2.
Wild olive trees have important potential, but, to date, the oil from wild olives has not been studied significantly, especially from an analytical point of view. In Spain, the wild olive tree is called “Acebuche” and its fruit “Acebuchina”. The objective of this work is to optimize the olive oil production process from the Acebuchina cultivar and characterize the oil, which could be marketed as healthy and functional food. A Box–Behnken experimental design with five central points was used, along with the Response Surface Methodology to obtain a mathematical experimental model. The oils from the Acebuchina cultivar meet the requirements for human consumption and have a good balance of fatty acids. In addition, the oils are rich in antioxidants and volatile compounds. The highest extraction yield, 12.0 g oil/100 g paste, was obtained at 90.0 min and the highest yield of phenolic compounds, 870.0 mg/kg, was achieved at 40.0 °C, and 90.0 min; but the maximum content of volatile compounds, 26.9 mg/kg, was obtained at 20 °C and 30.0 min. The oil yield is lower than that of commercial cultivars, but the contents of volatile and phenolic compounds is higher.  相似文献   

3.
Extra virgin olive oil (EVOO) is recognized for its nutritional virtues and the beneficial health effects deriving from its hydrophilic fraction (phenolic acids, phenolic alcohols, flavonoids, and secoiridoids). The phenolic compounds of EVOOs possess multiple biological properties such as antioxidant, antimicrobial, anticarcinogenic, and anti-inflammatory properties, among others. Considering that EVOOs produced in Greece are recognized as high-quality products due to their rich phenolic content, it is imperative to characterize Greek monovarietal EVOOs and ensure that their uniqueness is closely linked to their botanical and territorial origin. In this work, an ultra-high-performance liquid chromatography–quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS) analytical method combined with target and suspect screening was used to characterize monovarietal EVOOs of the Kolovi variety from Lesvos, and thereby establish their phenolic fingerprint. Overall, 25 phenols were determined, and the total quantification and semi-quantification results ranged between 251 and 1230 mg/kg, highlighting the high phenolic content of the Kolovi variety from the island of Lesvos in the North Aegean.  相似文献   

4.
At present the olive oil industry produces large amounts of secondary products once considered waste or by-products. In this paper, we present, for the first time, a new interesting olive by-product named “dried destoned virgin olive pomace” (DDVOP), produced by the pomace oil industry. The production of DDVOP is possible thanks to the use of a new system that differs from the traditional ones by having the dryer set at a lower temperature value, 350 °C instead of 550 °C, and by avoiding the solvent extraction phase. In order to evaluate if DDVOP may be suitable as a new innovative feeding integrator for animal feed, its chemical characteristics were investigated. Results demonstrated that DDVOP is a good source of raw protein and precious fiber; that it is consistent in total phenols (6156 mg/kg); rich in oleic (72.29%), linoleic (8.37%) acids and tocopherols (8.80 mg/kg). A feeding trial was, therefore, carried out on sheep with the scope of investigating the influence of the diet on the quality of milk obtained from sheep fed with DDVOP-enriched feed. The resulting milk was enriched in polyunsaturated (0.21%) and unsaturated (2.42%) fatty acids; and had increased levels of phenols (10.35 mg/kg) and tocopherols (1.03 mg/kg).  相似文献   

5.
6.
Apple is an important dietary source of carotenoids and phenolic compounds, and its regular consumption is associated with several health benefits. The aim of this study was to evaluate the phytochemical composition of fresh peels of four red-skinned (“Champion”, “Generos”, “Idared”, “Florina”) and two yellow-skinned (“Golden Delicious”, “Reinette Simirenko”) apple varieties. Antioxidant activity of apple peel extracts was determined by ferric reducing antioxidant power (FRAP) and ABTS radical scavenging capacity assays. Total carotenoid and polyphenolic contents were determined spectrophotometrically, while the profile of individual carotenoids and anthocyanins (in red-skinned varieties) was analyzed using high-performance liquid chromatography coupled to a photodiode array detector (HPLC-PDA). Carotenoid composition was specific for each variety, and total carotenoid content was slightly higher in yellow-skinned apple peels compared to red-skinned varieties. In contrast, total phenolic content was higher in the peels of red-skinned cultivars. Anthocyanin profile was predominated by cyanidin-3-O-galactoside. Antioxidant potential followed the trend of the total polyphenolic content, being highest in “Florina”, as measured by both FRAP and ABTS assays. Our results demonstrated apple peels have high phytochemical content with diverse compositions, and their regular consumption can be an excellent source of antioxidants.  相似文献   

7.
The quality of olive oils is sensorially tested by accurate and well established methods. It enables the classification of the pressed oils into the classes of extra virgin oil, virgin oil and lampant oil. Nonetheless, it would be convenient to have analytical methods for screening oils or supporting sensorial analysis using a reliable independent approach based on exploitation of mass spectrometric methodologies. A number of methods have been proposed to evaluate deficiencies of extra virgin olive oils resulting from inappropriate technological treatments, such as high or low temperature deodoration, and home cooking processes. The quality and nutraceutical value of extra virgin olive oil (EVOO) can be related to the antioxidant property of its phenolic compounds. Olive oil is a source of at least 30 phenolic compounds, such as oleuropein, oleocanthal, hydroxytyrosol, and tyrosol, all acting as strong antioxidants, radical scavengers and NSAI-like drugs. We now report the efficacy of MRM tandem mass spectrometry, assisted by the isotope dilution assay, in the evaluation of the thermal stability of selected active principles of extra virgin olive oil.  相似文献   

8.
The olive oil production is an important industrial sector in many Mediterranean areas, but it is currently struggled by the necessity of a proper valorisation of the olive mill solid waste or alperujo. The alperujo is the main by-product generated during the two-phase olive oil extraction, accounting for up to 80% of the initial olive mass. The alperujo is a source of valuable compounds, such as the pomace olive oil or highly interesting phenolic compounds. In the present research, a novel biorefinery approach has been used for phenolic compounds recovery. However, the extraction of these valuables compounds generates different exhausted phases with high organic matter content that are required to be managed. This study consists of the evaluation of the anaerobic biodegradability of the different fractions obtained in a novel biorefinery approach for the integral valorisation of alperujo. The results show that the different phases obtained during the biorefinery of the alperujo can be effectively subjected to anaerobic digestion and no inhibition processes were detected. The highest methane yield coefficients were obtained for the phases obtained after a two-months storages, i.e., suspended solids and liquid phase free of suspended solids, which generated 366 ± 7 mL CH4/g VS and 358 ± 6 mL CH4/g VS, respectively. The phenol extraction process reduced the methane yield coefficient around 25% due to the retention of biodegradable compounds during the extraction process. Regardless of this drop, the anaerobic digestion is a suitable technology for the stabilization of the different generated residual phases, whereas the high market price of the extracted phenols can largely compensate the slight decrease in the methane generation.  相似文献   

9.
The high oxidative stability of virgin olive oil is related to its high monounsaturated/polyunsaturated ratio and to the presence of antioxidant compounds, such as tocopherols and phenols. In this paper, the isolation of phenolic compounds from virgin olive oil, by different methods, was tested and discussed. Particularly liquid-liquid and solid-phase extraction methods were compared, assaying, for the latter, three stationary phases (C8, C18 and Diol) and several elution mixtures. Quantification of phenolic and o-diphenolic substances in the extracts was performed by the traditional Folin-Ciocalteau method and the sodium molybdate reaction, respectively. Furthermore, the quantification of phenolic compounds in the extracts and in a standard mixture was carried out both with diode array and mass spectrometric detection and capillary zone electrophoresis.  相似文献   

10.
The contribution of epigenetic mechanisms as a potential treatment model has been observed in cancer and autoimmune/inflammatory diseases. This review aims to put forward the epigenetic mechanisms as a promising strategy in implant surface functionalization and modification of biomaterials, to promote better osseointegration and bone regeneration, and could be applicable for alveolar bone regeneration and osseointegration in the future. Materials and Methods: Electronic and manual searches of the literature in PubMed, MEDLINE, and EMBASE were conducted, using a specific search strategy limited to publications in the last 5 years to identify preclinical studies in order to address the following focused questions: (i) Which, if any, are the epigenetic mechanisms used to functionalize implant surfaces to achieve better osseointegration? (ii) Which, if any, are the epigenetic mechanisms used to functionalize biomaterials to achieve better bone regeneration? Results: Findings from several studies have emphasized the role of miRNAs in functionalizing implants surfaces and biomaterials to promote osseointegration and bone regeneration, respectively. However, there are scarce data on the role of DNA methylation and histone modifications for these specific applications, despite being commonly applied in cancer research. Conclusions: Studies over the past few years have demonstrated that biomaterials are immunomodulatory rather than inert materials. In this context, epigenetics can act as next generation of advanced treatment tools for future regenerative techniques. Yet, there is a need to evaluate the efficacy/cost effectiveness of these techniques in comparison to current standards of care.  相似文献   

11.
12.
In this study, we determined the phytochemical profile of the Spanish “triguero” asparagus landrace “verde-morado” (Asparagus officinalis L.), a wild traditional landrace, and the improved “triguero” HT-801, together with two commercial green asparagus varieties. For comparison, we used reverse-phase high-performance liquid chromatography coupled with diode array electrospray time-of-flight mass spectrometry (RP-HPLC-DAD-ESI-TOF/MS) followed by a permutation test applied using a resampling methodology valid under a relaxed set of assumptions, such as i.i.d. errors (not necessarily normal) that are exchangeable under the null hypothesis. As a result, we postulate that “triguero” varieties (the improved HT-801 followed by its parent “verde-morado”) have a significantly different phytochemical profile from that of the other two commercial hybrid green varieties. In particular, we found compounds specific to the “triguero” varieties, such as feruloylhexosylhexose isomers, or isorhamnetin-3-O-glucoside, which was found only in the “triguero” variety HT-801. Although studies relating the phytochemical content of “triguero” asparagus varieties to its health-promoting effects are required, this characteristic phytochemical profile can be used for differentiating and revalorizating these asparagus cultivars.  相似文献   

13.
Olive pomace, the solid by-product derived from olive oil production consists of a high concentration of bioactive compounds with antioxidant activity, such as phenolic compounds, and their recovery by applying innovative techniques is a great opportunity and challenge for the olive oil industry. This study aimed to point out a new approach for the integrated valorization of olive pomace by extracting the phenolic compounds and protecting them by encapsulation or incorporation in nanoemulsions. Innovative assisted extraction methods were evaluated such as microwave (MAE), homogenization (HAE), ultrasound (UAE), and high hydrostatic pressure (HHPAE) using various solvent systems including ethanol, methanol, and natural deep eutectic solvents (NADESs). The best extraction efficiency of phenolic compounds was achieved by using NADES as extraction solvent and in particular the mixture choline chloride-caffeic acid (CCA) and choline chloride-lactic acid (CLA); by HAE at 60 °C/12,000 rpm and UAE at 60 °C, the total phenolic content (TPC) of extracts was 34.08 mg gallic acid (GA)/g dw and 20.14 mg GA/g dw for CCA, and by MAE at 60 °C and HHPAE at 600 MPa/10 min, the TPC was 29.57 mg GA/g dw and 25.96 mg GA/g dw for CLA. HAE proved to be the best method for the extraction of phenolic compounds from olive pomace. Microencapsulation and nanoemulsion formulations were also reviewed for the protection of the phenolic compounds extracted from olive pomace. Both encapsulation techniques exhibited satisfactory results in terms of encapsulation stability. Thus, they can be proposed as an excellent technique to incorporate phenolic compounds into food products in order to enhance both their antioxidative stability and nutritional value.  相似文献   

14.
The spectroscopic determination of phenolic molecules by means of multiple-quantum (MQ) NMR is demonstrated. Several classes of molecules (simple phenols, flavonols, secoiridoids and lignans) were unambiguously characterized in one pot analysis in an extract of extra virgin olive oil (EVOO).  相似文献   

15.
The extraction of phenolic compounds from olive mill wastes is important, not only to avoid environmental damages, but also because of the intrinsic value of those biophenols, well-known for their high antioxidant potential and health benefits. This study focuses on tyrosol (Tyr) and hydroxytyrosol (HT), two of the main phenolic compounds found in olive mill wastes. A new, simple, and eco-friendly extraction process for the removal of phenolic compounds from aqueous solutions using native β-cyclodextrin (β-CD) in the solid state has been developed. Several β-CD/biophenol molar ratios and biophenol concentrations were investigated, in order to maintain β-CD mostly in the solid state while optimizing the extraction yield and the loading capacity of the sorbent. The extraction efficiencies of Tyr and HT were up to 61%, with a total solid recovery higher than 90% using an initial concentration of 100 mM biophenol and 10 molar equivalents of β-CD. The photochemical stability of the complexes thus obtained was estimated from ∆E*ab curve vs. illumination time. The results obtained showed that the phenols encapsulated into solid β-CD are protected against photodegradation. The powder obtained could be directly developed as a safe-grade food supplement. This simple eco-friendly process could be used for extracting valuable biophenols from olive mill wastewater.  相似文献   

16.
A flow injection system with amperometric detection at potentials poised at +0.4 and +0.9 V was used to evaluate intensity of the bitter taste in monovarietal Extra Virgin Olive Oils (EVOO). Results from the proposed method were based on the extraction of the bitter constituents of the virgin olive oil samples in methanol‐water, followed by the direct amperometric measurement. These potentials were selected according to the hydrodynamic voltammogram of oleuropein, one of the most prominent and bitter phenolic compound found in EVOO. The amperometric detection was applied on 32 monovariatal EVOO samples. Results were correlated with the phenolic profile measured by high performance liquid chromatography (HPLC). The amperometric signal at +0.9 V mainly correlated with the total phenols of the samples (R2=0.81), whereas the signal at +0.4 V mainly correlated with oleuropein aglycone (3,4 DHPEA‐EDA, R2=0.79). Bitterness intensity of the samples was evaluated by a trained sensory panel of experts and the results compared to those obtained by the amperometric flow system. The best correlation with the bitter taste was achieved by the sensor at +0.4 V (R2=0.72). A calibration model based on partial least squares was built with three variables, namely the sensors set at +0.4 and +0.9 V and the total phenol content of the EVOO extracts. The model showed a moderate capacity to predict the bitterness of the EVOO samples using leave one out method, (R2=0.75) and in prediction of a test set of samples (R2=0.7). Such approach is very promising for future studies.  相似文献   

17.
Abstract

Olive oils may provide health benefits, including the prevention of coronary heart diseases, cancers, and the modification of immune and inflammatory responses. These benefits mainly originate from the phenolic compounds found in olive oil. There has been no study on the advanced characterization of Albanian olive oils from various cultivars regarding phenolic compounds. Hence, a comprehensive characterization of phenolic compounds is carried out in Albanian monocultivar virgin olive oils from five different cultivars, including Kalinjot, Bardhi Tirana, Ulliri-i-Zi Tirana, Krips Kruja, and Bardhi Kruja for the first time. Liquid chromatography coupled to diode array detection and electrospray ?onization tandem mass spectrometry (LC-DAD-ESI-MS/MS) is employed for the determination of phenolic compounds. In total, 18 compounds were identified in all samples, including phenolic alcohols, phenolic acids, secoiridoids, flavonoids, and phenolic aldehydes. Significant quantitative differences were detected among the cultivars, with the highest concentrations detected in virgin olive oil (VOO) from cv. Ulli-i-Zi. Secoiridoids were found in abundance, in general, followed by phenolic alcohols, and in this group, 3,4-DHPEA-EDA and p-HPEA-EDA stood out as dominant compounds, especially in Kalinjot virgin olive oils. Regarding phenolic alcohols, 3,4-DHPEA-AC was determined as the main phenolic compound. Phenolic profiles were found to be significantly different among the olive oil samples of different cultivars. Principal component analyses (PCA) displayed the differentiation of samples in terms of phenolic compounds.  相似文献   

18.
In the present work, the emission and the absorption spectra of numerous Greek olive oil samples and mixtures of them, obtained by two spectroscopic techniques, namely Laser-Induced Breakdown Spectroscopy (LIBS) and Absorption Spectroscopy, and aided by machine learning algorithms, were employed for the discrimination/classification of olive oils regarding their geographical origin. Both emission and absorption spectra were initially preprocessed by means of Principal Component Analysis (PCA) and were subsequently used for the construction of predictive models, employing Linear Discriminant Analysis (LDA) and Support Vector Machines (SVM). All data analysis methodologies were validated by both “k-fold” cross-validation and external validation methods. In all cases, very high classification accuracies were found, up to 100%. The present results demonstrate the advantages of machine learning implementation for improving the capabilities of these spectroscopic techniques as tools for efficient olive oil quality monitoring and control.  相似文献   

19.
Four different antioxidant tests (ABTS+, DPPH, ORAC, β-carotene-linoleate model system) were used to determine the free-radical scavenging activity of 39 extra virgin olive oils (EVOO) and compare the total phenol content by the Folin-Ciocalteu method. The correlation between the total phenols and antioxidant capacities measured by the four methods was very high, and highest with ABTS+ (R2 = 0.9905). Some of these methods of measurement were applied to olive-oil samples (OO), with approximately a 50% decrease in the value of the antioxidant capacity in comparison with values found for EVOO. In conclusion, the results show that all the methods tested were suitable for determining the antioxidant capacity of olive oil. The Picual variety of extra-virgin olive oil showed high antioxidant activity.  相似文献   

20.
Eukaryotic genomes are dynamically regulated through a host of epigenetic stimuli. The substrate for these epigenetic transactions, chromatin, is a polymer of nucleosome building blocks. In native chromatin, each nucleosome can differ from its neighbors as a result of covalent modifications to both the DNA and the histone packaging proteins. The heterotypic nature of chromatin presents a formidable obstacle to biochemical studies seeking to understand the role of context on epigenetic regulation. A chemical approach to the production of heterotypic chromatin that can be used in such studies is introduced. This method involves the attachment of a user‐defined modified histone peptide to a designated nucleosome within the polymer by using a peptide nucleic acid (PNA) targeting compound. This strategy was applied to dissect the effect of chromatin context on the activity of the histone methyltransferase PRC2. The results show that PRC2 can be stimulated to produce histone H3 methylation from a defined nucleation site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号