首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zhihao Wu  Youfang Lin 《Physica A》2012,391(7):2475-2490
The detection of overlapping community structure in networks can give insight into the structures and functions of many complex systems. In this paper, we propose a simple but efficient overlapping community detection method for very large real-world networks. Taking a high-quality, non-overlapping partition generated by existing, efficient, non-overlapping community detection methods as input, our method identifies overlapping nodes between each pair of connected non-overlapping communities in turn. Through our analysis on modularity, we deduce that, to become an overlapping node without demolishing modularity, nodes should satisfy a specific condition presented in this paper. The proposed algorithm outputs high quality overlapping communities by efficiently identifying overlapping nodes that satisfy the above condition. Experiments on synthetic and real-world networks show that in most cases our method is better than other algorithms either in the quality of results or the computational performance. In some cases, our method is the only one that can produce overlapping communities in the very large real-world networks used in the experiments.  相似文献   

2.
Community detection has become an important methodology to understand the organization and function of various real-world networks. The label propagation algorithm (LPA) is an almost linear time algorithm proved to be effective in finding a good community structure. However, LPA has a limitation caused by its one-hop horizon. Specifically, each node in LPA adopts the label shared by most of its one-hop neighbors; much network topology information is lost in this process, which we believe is one of the main reasons for its instability and poor performance. Therefore in this paper we introduce a measure named weighted coherent neighborhood propinquity (weighted-CNP) to represent the probability that a pair of vertices are involved in the same community. In label update, a node adopts the label that has the maximum weighted-CNP instead of the one that is shared by most of its neighbors. We propose a dynamic and adaptive weighted-CNP called entropic-CNP by using the principal of entropy to modulate the weights. Furthermore, we propose a framework to integrate the weighted-CNP in other algorithms in detecting community structure. We test our algorithm on both computer-generated networks and real-world networks. The experimental results show that our algorithm is more robust and effective than LPA in large-scale networks.  相似文献   

3.
Community detection is an important methodology for understanding the intrinsic structure and function of a realworld network.In this paper,we propose an effective and efficient algorithm,called Dominant Label Propagation Algorithm(Abbreviated as DLPA),to detect communities in complex networks.The algorithm simulates a special voting process to detect overlapping and non-overlapping community structure in complex networks simultaneously.Our algorithm is very efficient,since its computational complexity is almost linear to the number of edges in the network.Experimental results on both real-world and synthetic networks show that our algorithm also possesses high accuracies on detecting community structure in networks.  相似文献   

4.
Community detection is of great significance in understanding the structure of the network. Label propagation algorithm (LPA) is a classical and effective method, but it has the problems of randomness and instability. An improved label propagation algorithm named LPA-MNI is proposed in this study by combining the modularity function and node importance with the original LPA. LPA-MNI first identify the initial communities according to the value of modularity. Subsequently, the label propagation is used to cluster the remaining nodes that have not been assigned to initial communities. Meanwhile, node importance is used to improve the node order of label updating and the mechanism of label selecting when multiple labels are contained by the maximum number of nodes. Extensive experiments are performed on twelve real-world networks and eight groups of synthetic networks, and the results show that LPA-MNI has better accuracy, higher modularity, and more reasonable community numbers when compared with other six algorithms. In addition, LPA-MNI is shown to be more robust than the traditional LPA algorithm.  相似文献   

5.
Robust network community detection using balanced propagation   总被引:1,自引:0,他引:1  
Label propagation has proven to be an extremely fast method for detecting communities in large complex networks. Furthermore, due to its simplicity, it is also currently one of the most commonly adopted algorithms in the literature. Despite various subsequent advances, an important issue of the algorithm has not yet been properly addressed. Random (node) update orders within the algorithm severely hamper its robustness, and consequently also the stability of the identified community structure. We note that an update order can be seen as increasing propagation preferences from certain nodes, and propose a balanced propagation that counteracts for the introduced randomness by utilizing node balancers. We have evaluated the proposed approach on synthetic networks with planted partition, and on several real-world networks with community structure. The results confirm that balanced propagation is significantly more robust than label propagation, when the performance of community detection is even improved. Thus, balanced propagation retains high scalability and algorithmic simplicity of label propagation, but improves on its stability and performance.  相似文献   

6.
Most existing methods for detection of community overlap cannot balance efficiency and accuracy for large and densely overlapping networks. To quickly identify overlapping communities for such networks, we propose a new method that uses belief propagation and conflict (PCB) to occupy communities. We first identify triangles with maximal clustering coefficients as seed nodes and sow a new type of belief to the seed nodes. Then the beliefs explore their territory by occupying nodes with high assent ability. The beliefs propagate their strength along the graph to consolidate their territory, and conflict with each other when they encounter the same node simultaneously. Finally, the node membership is judged from the belief vectors. The PCB time complexity is nearly linear and its space complexity is linear. The algorithm was tested in extensive experiments on three real-world social networks and three computer-generated artificial graphs. The experimental results show that PCB is very fast and highly reliable. Tests on real and artificial networks give excellent results compared with three newly proposed overlapping community detection algorithms.  相似文献   

7.
Duanbing Chen  Zehua Lv  Yan Fu 《Physica A》2010,389(19):4177-4187
Identification of communities is significant in understanding the structures and functions of networks. Since some nodes naturally belong to several communities, the study of overlapping communities has attracted increasing attention recently, and many algorithms have been designed to detect overlapping communities. In this paper, an overlapping communities detecting algorithm is proposed whose main strategies are finding an initial partial community from a node with maximal node strength and adding tight nodes to expand the partial community. Seven real-world complex networks and one synthetic network are used to evaluate the algorithm. Experimental results demonstrate that the algorithm proposed is efficient for detecting overlapping communities in weighted networks.  相似文献   

8.
Community detection is a fundamental work to analyse the structural and functional properties of complex networks.The label propagation algorithm(LPA) is a near linear time algorithm to find a good community structure. Despite various ubsequent advances, an important issue of this algorithm has not yet been properly addressed. Random update orders within the algorithm severely hamper the stability of the identified community structure. In this paper, we executed the asic label propagation algorithm on networks multiple times, to obtain a set of consensus partitions. Based on these onsensus partitions, we created a consensus weighted graph. In this consensus weighted graph, the weight value of the dge was the proportion value that the number of node pairs allocated in the same cluster was divided by the total number f partitions. Then, we introduced consensus weight to indicate the direction of label propagation. In label update steps,y computing the mixing value of consensus weight and label frequency, a node adopted the label which has the maximum mixing value instead of the most frequent one. For extending to different networks, we introduced a proportion parameter o adjust the proportion of consensus weight and label frequency in computing mixing value. Finally, we proposed an pproach named the label propagation algorithm with consensus weight(LPAcw), and the experimental results showed that he LPAcw could enhance considerably both the stability and the accuracy of community partitions.  相似文献   

9.
Community structure is an important property of complex networks. Most optimization-based community detection algorithms employ single optimization criteria. In this study, the community detection is solved as a multiobjective optimization problem by using the multiobjective evolutionary algorithm based on decomposition. The proposed algorithm maximizes the density of internal degrees, and minimizes the density of external degrees simultaneously. It can produce a set of solutions which can represent various divisions to the networks at different hierarchical levels. The number of communities is automatically determined by the non-dominated individuals resulting from our algorithm. Experiments on both synthetic and real-world network datasets verify that our algorithm is highly efficient at discovering quality community structure.  相似文献   

10.
There is a wealth of information in real-world social networks. In addition to the topology information, the vertices or edges of a social network often have attributes, with many of the overlapping vertices belonging to several communities simultaneously. It is challenging to fully utilize the additional attribute information to detect overlapping communities. In this paper, we first propose an overlapping community detection algorithm based on an augmented attribute graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to help detect overlapping communities more accurately. Second, we enhance the algorithm to automatically determine the number of communities by a node-density-based fuzzy k-medoids process. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively detect overlapping communities with fewer parameters compared to the baseline methods.  相似文献   

11.
Properties of complex networks, such as small-world property, power-law degree distribution, network transitivity, and network- community structure which seem to be common to many real-world networks have attracted great interest among researchers. In this study, global information of the networks is considered by defining the profile of any node based on the shortest paths between it and all the other nodes in the network; then a useful iterative procedure for community detection based on a measure of information discrepancy and the popular modular function Q is presented. The new iterative method does not need any prior knowledge about the community structure and can detect an appropriate number of communities, which can be hub communities or non-hub communities. The computational results of the method on real networks confirm its capability.  相似文献   

12.
X. Liu  T. Murata 《Physica A》2010,389(7):1493-1500
A modularity-specialized label propagation algorithm (LPAm) for detecting network communities was recently proposed. This promising algorithm offers some desirable qualities. However, LPAm favors community divisions where all communities are similar in total degree and thus it is prone to get stuck in poor local maxima in the modularity space. To escape local maxima, we employ a multistep greedy agglomerative algorithm (MSG) that can merge multiple pairs of communities at a time. Combining LPAm and MSG, we propose an advanced modularity-specialized label propagation algorithm (LPAm+). Experiments show that LPAm+ successfully detects communities with higher modularity values than ever reported in two commonly used real-world networks. Moreover, LPAm+ offers a fair compromise between accuracy and speed.  相似文献   

13.
Fuzzy analysis of community detection in complex networks   总被引:1,自引:0,他引:1  
Dawei Zhang  Yong Zhang  Kaoru Hirota 《Physica A》2010,389(22):5319-5327
A snowball algorithm is proposed to find community structures in complex networks by introducing the definition of community core and some quantitative conditions. A community core is first constructed, and then its neighbors, satisfying the quantitative conditions, will be tied to this core until no node can be added. Subsequently, one by one, all communities in the network are obtained by repeating this process. The use of the local information in the proposed algorithm directly leads to the reduction of complexity. The algorithm runs in O(n+m) time for a general network and O(n) for a sparse network, where n is the number of vertices and m is the number of edges in a network. The algorithm fast produces the desired results when applied to search for communities in a benchmark and five classical real-world networks, which are widely used to test algorithms of community detection in the complex network. Furthermore, unlike existing methods, neither global modularity nor local modularity is utilized in the proposal. By converting the considered problem into a graph, the proposed algorithm can also be applied to solve other cluster problems in data mining.  相似文献   

14.
Detecting community structure in complex networks via node similarity   总被引:1,自引:0,他引:1  
Ying Pan  De-Hua Li  Jing-Zhang Liang 《Physica A》2010,389(14):2849-1810
The detection of the community structure in networks is beneficial to understand the network structure and to analyze the network properties. Based on node similarity, a fast and efficient method for detecting community structure is proposed, which discovers the community structure by iteratively incorporating the community containing a node with the communities that contain the nodes with maximum similarity to this node to form a new community. The presented method has low computational complexity because of requiring only the local information of the network, and it does not need any prior knowledge about the communities and its detection results are robust on the selection of the initial node. Some real-world and computer-generated networks are used to evaluate the performance of the presented method. The simulation results demonstrate that this method is efficient to detect community structure in complex networks, and the ZLZ metrics used in the proposed method is the most suitable one among local indices in community detection.  相似文献   

15.
16.
A fuzzy overlapping community is an important kind of overlapping community in which each node belongs to each community to different extents. It exists in many real networks but how to identify a fuzzy overlapping community is still a challenging task. In this work, the concept of local random walk and a new distance metric are introduced. Based on the new distance measurement, the dissimilarity index between each node of a network is calculated firstly. Then in order to keep the original node distance as much as possible, the network structure is mapped into low-dimensional space by the multidimensional scaling (MDS). Finally, the fuzzy cc-means clustering is employed to find fuzzy communities in a network. The experimental results show that the proposed algorithm is effective and efficient to identify the fuzzy overlapping communities in both artificial networks and real-world networks.  相似文献   

17.
Detection of community structures in the weighted complex networks is significant to understand the network structures and analysis of the network properties. We present a unique algorithm to detect overlapping communities in the weighted complex networks with considerable accuracy. For a given weighted network, all the seed communities are first extracted. Then to each seed community, more community members are absorbed using the absorbing degree function. In addition, our algorithm successfully finds common nodes between communities. The experiments using some real-world networks show that the performance of our algorithm is satisfactory.  相似文献   

18.
Detecting overlapping communities is a challenging task in analyzing networks, where nodes may belong to more than one community. Many present methods optimize quality functions to extract the communities from a network. In this paper, we present a probabilistic method for detecting overlapping communities using a generative model. The model describes the probability of generating a network with the model parameters, which reflect the communities in the network. The community memberships of each node are determined based on a probabilistic approach using those model parameters, whose values can be obtained by fitting the model to the network. This method has the advantage that the node participation degrees in each community are also computed. The proposed method is compared with some other community detection methods on both synthetic networks and real-world networks. The experiments show that this method is efficient at detecting overlapping communities and can provide better performance on the networks where a majority of nodes belong to more than one community.  相似文献   

19.
Jing-En Wang 《中国物理 B》2021,30(8):88902-088902
The identification of influential nodes in complex networks is one of the most exciting topics in network science. The latest work successfully compares each node using local connectivity and weak tie theory from a new perspective. We study the structural properties of networks in depth and extend this successful node evaluation from single-scale to multi-scale. In particular, one novel position parameter based on node transmission efficiency is proposed, which mainly depends on the shortest distances from target nodes to high-degree nodes. In this regard, the novel multi-scale information importance (MSII) method is proposed to better identify the crucial nodes by combining the network's local connectivity and global position information. In simulation comparisons, five state-of-the-art algorithms, i.e. the neighbor nodes degree algorithm (NND), betweenness centrality, closeness centrality, Katz centrality and the k-shell decomposition method, are selected to compare with our MSII. The results demonstrate that our method obtains superior performance in terms of robustness and spreading propagation for both real-world and artificial networks.  相似文献   

20.
To find the fuzzy community structure in a complex network, in which each node has a certain probability of belonging to a certain community, is a hard problem and not yet satisfactorily solved over the past years. In this paper, an extension of modularity, the fuzzy modularity is proposed, which can provide a measure of goodness for the fuzzy community structure in networks. The simulated annealing strategy is used to maximize the fuzzy modularity function, associating with an alternating iteration based on our previous work. The proposed algorithm can efficiently identify the probabilities of each node belonging to different communities with random initial fuzzy partition during the cooling process. An appropriate number of communities can be automatically determined without any prior knowledge about the community structure. The computational results on several artificial and real-world networks confirm the capability of the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号